Значение слова шрапнель. Шрапнель - что это такое? Артиллерийский снаряд


Шрапнель - вид взрывчатого артиллерийского снаряда, предназначенный для поражения живой силы противника. Назван в честь Генри Шрэпнела (англ. Henry Shrapnel) (1761-1842) - офицера Британской армии, который создал первый снаряд такого вида.
Отличительной особенностью шрапнельного снаряда являются 2 конструктивных решения:

Наличие в снаряде готовых поражающих элементов и заряда взрывчатого вещества для подрыва снаряда.

Наличие в снаряде технических приспособлений, обеспечивающих подрыв снаряда только после того, как он пролетит некоторое расстояние.

Предыстория снаряда

Ещё в XVI веке при применении артиллерии возникал вопрос об эффективности действий артиллерии против пехоты и кавалерии противника. Применение против живой силы ядер было низкоэффективным, потому что ядро может поразить только одного человека, а убойная сила ядра является явно избыточной для выведения его из строя. На самом деле пехота, вооруженная пиками, воевала в плотных строях, наиболее эффективных для рукопашного боя. Мушкетёры также строились в несколько рядов для применения приёма «караколь». При попадании в такой строй пушечное ядро поражало обычно нескольких человек, стоявших друг за другом. Однако развитие ручного огнестрельного оружия, увеличение его скорострельности, меткости и дальности стрельбы позволило отказаться от пик, вооружить всю пехоту ружьями со штыками и ввести линейные построения. Пехота, построенная не в колонну, а в линию, несла существенно меньшие потери от пушечных ядер.
Для поражения живой силы с помощью артиллерии стали применять картечь - металлические шарообразные пули, насыпанные в ствол орудия вместе с пороховым зарядом. Однако применение картечи было неудобным из-за способа заряжания.
Несколько улучшило ситуацию внедрение картечного снаряда. Такой снаряд представлял собой цилиндрическую коробку из картона или тонкого металла, в которую были сложены пули в нужном количестве. Перед выстрелом такой снаряд загружался в ствол орудия. В момент выстрела происходило разрушение корпуса снаряда, после чего пули вылетали из ствола и поражали противника. Такой снаряд был более удобен в применении, но картечь всё равно оставалась низкоэффективной. Выпущенные таким образом пули быстро теряли убойную силу и уже на расстояниях порядка 400-500 метров не способны были поразить противника.

Картечная граната Генри Шрэпнела

Новый вид снаряда для поражения живой силы изобрел Генри Шрэпнел. Картечная граната конструкции Генри Шрэпнела представляла собой прочную полую сферу, внутри которой находились пули и заряд пороха. Отличительной особенностью гранаты являлось наличие в корпусе отверстия, в которое вставлялась запальная трубка, изготовленная из дерева и содержащая некоторое количество пороха. Эта трубка служила одновременно запалом и замедлителем. При выстреле ещё при нахождении снаряда в канале ствола воспламенялся порох в запальной трубке. При полете снаряда происходило постепенное сгорание пороха в запальной трубке. Когда этот порох выгорал полностью, огонь переходил на пороховой заряд, находящийся в самой гранате, что приводило к взрыву снаряда. В результате взрыва корпус гранаты разрушался на осколки, которые вместе с пулями разлетались в стороны и поражали противника.

Важной особенностью конструкции было то, что длину запальной трубки можно было изменять непосредственно перед выстрелом. Таким образом можно было с определённой точностью добиться подрыва снаряда в желаемом месте.


К моменту изобретения своей гранаты Генри Шрэпнел состоял на военной службе в звании капитана (из-за чего в источниках он часто упоминается как «капитан Шрэпнел») в течение 8 лет. В 1803 году гранаты конструкции Шрэпнела были приняты на вооружение британской армии. Они довольно быстро продемонстрировали свою эффективность против пехоты и кавалерии. За свое изобретение Генри Шрэпнел был достойно вознагражден: уже 1 ноября 1803 года он получил звание майора, затем 20 июля 1804 года он был произведен в звание подполковника, в 1814 году ему было назначено денежное содержание от британского правительства в размере 1200 фунтов в год, впоследствии он был произведен в генералы.

Диафрагменная шрапнель

В 1871 году русский артиллерист В. Н. Шкларевич разработал для только что появившихся нарезных орудий диафрагменную шрапнель с донной камерой и центральной трубкой. Снаряд Шкларевича представлял собой цилиндрический корпус, разделенный картонной перегородкой (диафрагмой) на 2 отсека. В донном отсеке находился заряд взрывчатого вещества. В другом отсеке находились шарообразные пули. По оси снаряда проходила трубка, заполненная медленно горящим пиротехническим составом. На передний конец ствола надевалась головка с капсюлем. В момент выстрела происходит взрыв капсюля и воспламенение состава в продольной трубке. Во время полета снаряда огонь по центральной трубке постепенно передается к донному пороховому заряду. Воспламенение этого заряда приводит к его взрыву. Этот взрыв толкает вперед по ходу снаряда диафрагму и находящиеся за ней пули, что приводит к отрыву головки и вылету пуль из снаряда.
Такое устройство снаряда позволило применять его в нарезной артиллерии конца XIX века. Кроме того, у него было важное достоинство: при подрыве снаряда пули разлетались не равномерно во все стороны (как у сферической гранаты Шрэпнела), а направленно вдоль оси полета снаряда с отклонением от неё в сторону. Это повысило боевую эффективность снаряда.
Вместе с тем, такая конструкция содержала в себе существенный недостаток: время горения заряда замедлителя было постоянным. То есть снаряд был рассчитан на стрельбу на заранее определённую дистанцию и был мало эффективен при стрельбе на другие дистанции. Этот недостаток был устранен в 1873 году, когда была разработана трубка дистанционного подрыва снаряда с поворотным кольцом. Отличие конструкции состояло в том, что путь огня от капсюля до взрывного заряда состоял из 3 частей, одним из которых была (как и в старой конструкции) центральная трубка, а два других представляли собой каналы с аналогичным пиротехническим составом, находящиеся в поворотных кольцах. За счёт поворота этих колец можно было отрегулировать общее количество пиротехнического состава, которое сгорит во время полета снаряда, и таким образом обеспечить подрыв снаряда на заданной дистанции стрельбы. В разговорной речи артиллеристов использовались термины: снаряд установлен (поставлен) «на картечь», если дистанционная трубка установлена на минимальное время горения, и «на шрапнель» если подрыв снаряда должен произойти на значительном удалении от орудия. Как правило, деления на кольцах дистанционной трубки совпадали с делениями на прицеле орудия. Поэтому командиру орудийного расчета, для того, чтобы заставить снаряд разорваться в нужном месте, достаточно было скомандовать одинаковую установку трубки и прицела. Например: прицел 100; трубка 100. Помимо упомянутых положений дистанционной трубки существовало еще положение поворотных колец «на удар». В этом положении путь огня от капсюля до взрывного заряда прерывался вовсе. Подрыв основного взрывного заряда снаряда происходил в момент попадания снаряда в препятствие.

История боевого применения шрапнельных снарядов


Русский 48-линейный (122-мм) шрапнельный снаряд

Шрапнельные артиллерийские снаряды активно использовались с момента изобретения и до Первой мировой войны. Причем для полевой и горной артиллерии калибра 76 мм они составляли подавляющее большинство снарядов. Также шрапнельные снаряды использовались и в артиллерии более крупного калибра. К 1914 году были выявлены существенные недостатки шрапнельных снарядов, но снаряды продолжали использоваться.

Наиболее значительным по эффективности случаем применения шрапнельных снарядов считается бой, который произошёл 7 августа 1914 года между армиями Франции и Германии. Командир 6-й батареи 42 полка французской армии капитан Ломбаль во время боя обнаружил на удалении 5000 метров от своих позиций немецкие войска, выходящие из леса. Капитан приказал открыть огонь из 75-мм орудий шрапнельными снарядами по этому скоплению войск. 4 орудия сделали по 4 выстрела каждое. В результате этого обстрела 21-й прусский драгунский полк, который перестраивался в этот момент из походной колонны в боевой порядок, потерял убитыми около 700 человек и примерно столько же лошадей и перестал существовать как боевая единица.

Однако уже в среднем периоде войны, характеризуемом переходом к массовому применению артиллерии и позиционным боевым действиям и ухудшением квалификации офицерского артиллерийского состава стали выявляться крупные недостатки шрапнели:
малое убойное действие низкоскоростных сферических пуль шрапнели;
полное бессилие шрапнели при настильных траекториях против живой силы, находящейся в окопах и ходах сообщения, и при любых траекториях - против живой силы в блиндажах и капонирах;
малая эффективность стрельбы шрапнелью (большое количество высотных разрывов и так называемых «клевков») слабообученным офицерским персоналом, в большом количестве пришедшим из резерва;
дороговизна и сложность шрапнели в массовом производстве.

Поэтому в ходе Первой мировой войны шрапнель стала быстро вытесняться гранатой с взрывателем мгновенного (осколочного) действия, не имеющей этих недостатков и обладающей к тому же сильным психологическим воздействием.
Несмотря на всё, снаряды данного типа продолжали производить и использовать даже не по прямому назначению. Например из-за того, что кумулятивные снаряды (имевшие большую бронепробиваемость, чем у бронебойных) появились в боекомплекте полковых орудий Красной армии только с 1943 года, до этого времени при борьбе с танками Вермахта использовалась чаще всего шрапнель, поставленная «на удар».

Шрапнельные противопехотные мины

Противопехотные мины, внутреннее устройство которых сходно со шрапнельным снарядом, разрабатывались в Германии. Во времена первой мировой войны была разработана Schrapnell-Mine, управляемая по электрическому проводу. Позднее на ее основе была разработана и в 1936 году принята на вооружение мина Sprengmine 35. Мина могла применяться со взрывателями нажимного или натяжного действия, а также с электродетонаторами. При срабатывании взрывателя сначала воспламенялся пороховой замедлитель, который выгорал примерно за 4–4,5 секунды. После этого огонь переходил на вышибной заряд, взрыв которого подбрасывал боевой блок мины на высоту порядка 1 метра. Внутри боевого блока также были трубки-замедлители с порохом, по которым огонь передавался на основной заряд. После выгорания пороха в замедлителях (хотя бы в 1 трубке) происходил взрыв основного заряда. Этот взрыв приводил к разрушению корпуса боевого блока и разбросу осколков корпуса и находившихся внутри блока стальных шариков (365 штук). Разлетающиеся осколки и шарики были способны поразить живую силу на расстоянии до 15–20 метров от места установки мины. Из-за особенности применения эта мина получила в Советской армии прозвище «мина-лягушка», а в армиях Великобритании и США - «прыгающая Бетти». Впоследствии мины такого типа были разработаны и приняты на вооружение и в других странах (советские ОЗМ-3, ОЗМ-4, ОЗМ-72, американская M16 APM, итальянская «Valmara 69» и т.п.

Развитие идеи

Хотя шрапнельные снаряды как противопехотное оружие уже практически не применяются, идеи, на которых основывалась конструкция снаряда, продолжают использоваться:
Используются боеприпасы со сходным принципом устройства, в которых вместо шарообразных пуль применяются стержневые, стреловидные или пулевидные поражающие элементы. В частности, США во время войны во Вьетнаме использовали гаубичные снаряды с поражающими элементами в виде небольших стальных оперенных стрел. Эти снаряды показали свою высокую эффективность при обороне орудийных позиций.
На принципах шрапнельного снаряда построены боевые части некоторых зенитных ракет. Например, боевая часть ракет ЗРК С-75 снаряжена готовыми поражающими элементами в виде стальных шариков или в некоторых модификациях пирамидок. Вес одного такого элемента менее 4 г, общее число в БЧ - около 29 тыс.


Генри Шрапнель родился в Англии в городе Брэдфорде 3 июня 1761 года. В 1784 году, находясь на службе в Королевской артиллерии в чине капитана, он додумался для поражения живой силы использовать полую сферу, наполненную пулями, которая разрывалась в воздухе. После того как новый снаряд показал себя в деле, военная карьера его изобретателя стала стремительно расти.
До этого момента в кавалерию и пехоту стреляли в основном картечью. Это были металлические шарообразные пули, насыпанные в ствол орудия вместе с пороховым зарядом. Но картечь было неудобно заряжать, и потому в регулярных боевых войсках быстро оценили новаторство, предложенное капитаном Шрапнелем. Да и сам капитан смог проверить эффективность своего изобретения на собственной шкуре в буквальном смысле: в 1793 году он был ранен шрапнелью во время боя во Фландрии. Тогда этот снаряд еще не получил его имени. Шрапнельным его стали называть только в 1803 году. Тогда же Шрапнеля произвели в майоры. Это было вскоре после того, как новый снаряд показал свою мощь во время взятия Суринама. Уже 30 апреля 1804 года Шрапнель получил чин подполковника.
Действие шрапнели в бою было столь впечатляющим, что наблюдавший за бомбардировками англичан Балтимора в 1814 году американский писатель Френсис Скотт Кей посвятил шрапнели несколько строк в своей поэме, позже ставшей государственным гимном США.
После сражение при Вимейро в 1808 году Наполеон издал приказ - собрать неразорвавшиеся снаряды, демонтировать, изучить и наладить производство подобного. Однако Наполеону не удалось открыть секрет английского капитана. Что видимо во много решило исход битвы при Ватерлоо, где шрапнель помогла Веллингтону продержиться до похода прусского корпуса. Как считал артиллерийский полковник Роб, «нет более смертоносного огня, чем действие шрапнели». А генерал Джордж Вуд, командовавший артиллерией у Веллингтона был еще более категоричен: «Без шрапнели нам не удалось бы вернуть Ла Э-Сент главную позицию нашей обороны. Это обстоятельство способствовало коренному повороту в ходе сражения».
Британское правительство назначило Шрапнелю ежегодную пенсию в 1200 фунтов и поручило командовать батальоном. 6 марта 1827 года Шрапнель получил чин старшего полковника Королевской артиллерии, а через десять лет 10 января 1837 года производят в генерал-лейтенанты. Умер Генри Шрапнель 13 марта 1842 года в Петри-Хауз в Саутгемптоне.

«Помолитесь за полковника Шрапнеля от моего имени за его снаряды – они творят чудеса!»

В 1779 году Генри Шрапнель в возрасте 18 лет поступает на службу в Королевскую артиллерию кадетом. В 1784-ом году молодой лейтенант днем и ночью работает над усовершенствованием артиллерийского снаряда, который «перемолотит» пехоту противника на открытой местности. «Сферический контейнер», так будет позже называть свое изобретение британский военный. Он смог объединить убойный поражающий эффект и большой радиус воздействия площадью около 150-200 метров в длину и 20-30 метров в ширину.

Восхождение снаряда

Внешне снаряд представлял собой прочную сферу, внутри которой находились сноп пуль и заряд пороха. В идеале сфера должна разорваться именно в том месте, где рассчитывает артиллерист, но преждевременная детонация неоднократно откладывала момент славы английского офицера Генри Шрапнеля. В 1787 году он командируется в Гибралтар, где донимает новое руководство возможностью испытать свое детище. В период Большой осады Гибралтара 1779–1783 годы существовала возможность испытать новинки артиллерии. После первого применения в боевых условиях и в дальнейшем Генри Шрапнель стал получать благодарственные письма от солдат и офицеров, что являлось для него высшим признанием заслуг.

7 июня 1803 года комиссия представила положительное заключение об эффекте, производимом снарядами Шрапнеля. Что же касается самого Генри Шрапнеля, то 1 ноября того же 1803 года ему присвоено майорское звание.

30 апреля 1804 года во время атаки на форт Новый Амстердам в Голландской Гвиане (Суринам) использовались снаряды Шрапнеля. В том же году, 20 июля, Генри Шрапнель был повышен в звании до подполковника.

17 января 1806 года ядра Шрапнеля успешно применены на юге Африки, где британские войска увеличивали владения своей страны.

21 августа 1808 года – Веймарское сражение. Англичане применили против французских войск разрывные снаряды, наполненные мушкетными пулями, пехота французов понесла серьезные потери.

18 июня 1815 года – сражение при Ватерлоо. Весомый вклад в завершении Наполеоновой истории принадлежит шрапнельным снарядам, точные расчеты артиллерии резко сокращали численность французской армии и без того обескровленной.

Шрапнель в 20 веке

7 августа 1914 года во время сражения между армиями Франции и Германии эффективность шрапнели продемонстрировал капитан французской армии Ломбаль. Он заметил приближение немецких войск на расстоянии 5000 метров от своих позиций. Капитан приказал открыть огонь из 75-мм орудий шрапнельными снарядами по этому скоплению войск. 4 орудия сделали по 4 выстрела каждое. В результате обстрела полк перестал существовать как боевая единица.

В 1930-х годах ХХ века шрапнель была вытеснена более мощными осколочными и осколочно-фугасными снарядами.

На принципах шрапнельного снаряда построены боевые части некоторых зенитных ракет. В том числе боевая часть ракет ЗРК С-75 снаряжена готовыми поражающими элементами в виде стальных шариков или в некоторых модификациях пирамидок, общее число – около 29 тыс.

За свой вклад Шрапнель Генри (1761-1842), британский генерал-лейтенант, был удостоен внушительной пожизненной пенсии, а имя своего изобретателя снаряд получит спустя много лет.

7 августа 1914 года шел жаркий бой: французы бились с немцами, которые только что перешли границу и вторглись во Францию. Капитан Ломбаль – командир французской 75-миллиметровой пушечной батареи – осматривал в бинокль поле боя. Вдали, километров за пять, виднелся большой лес. Оттуда появлялись колонны немецких войск, и капитан Ломбаль вел по ним огонь.
Вдруг какое-то желтое пятно, показавшееся слева от леса, привлекло внимание капитана. Пятно ширилось, словно растекалось по полю. Но за пять километров даже в бинокль не удавалось разглядеть, что это такое. Одно лишь было ясно: раньше не было этого пятна, а теперь оно появилось – и передвигается; очевидно, это – немецкие войска. И капитан Ломбаль решил на всякий случай пустить в ту сторону несколько снарядов. Быстро определил он по карте, где именно находится пятно, сделал расчеты, чтобы перенести огонь, и подал команды.
С резким свистом снаряды понеслись вдаль. Каждое из четырех орудий батареи сделало по четыре выстрела: капитан Ломбаль не хотел тратить много снарядов на эту непонятную цель. Всего лишь несколько десятков секунд продолжалась стрельба.
Пятно перестало растекаться по полю.
К вечеру бой затих. Большой лес попал в руки французов. А слева от этого леса – на большой поляне – французы нашли горы трупов: около 700 немецких кавалеристов и столько же лошадей лежали мертвые. Это был почти весь 21-й прусский драгунский полк. Он попался на глаза французскому артиллеристу в тот момент, когда перестраивался в боевой порядок, и был целиком уничтожен в несколько десятков секунд шестнадцатью снарядами капитана Ломбаля.
Снаряды, которые произвели такое опустошение в немецких рядах, носят название «шрапнель».
Как же устроен этот замечательный снаряд, и кто его придумал?
Уже давно – еще в шестнадцатом веке – задумывались артиллеристы над таким вопросом:
– Какой смысл поражать неприятельского бойца большим, тяжелым ядром, когда довольно и маленькой пули, чтоб вывести человека из строя?
И вот в тех случаях, когда нужно было не разрушать стены, а наносить поражение неприятельской пехоте, артиллеристы стали вместо ядра закладывать в ствол орудия целую кучу мелких камней.
Рис. 80. Картечь надежно защищает пушку от атакующей пехоты или конницы противника

Но заряжать орудие кучей камней неудобно: камни рассыпаются в стволе; в полете они быстро теряют скорость. Поэтому вскоре же – в начале семнадцатого века – стали заменять камни шаровыми металлическими пулями.

Рис. 81. Как была устроена и как действовала «картечная граната»

Чтобы удобнее было заряжать орудие большим количеством пуль, их заранее укладывали в круглую (цилиндрической формы) коробку.
Такой снаряд получил название «картечь». Коробка картечи разламывается в момент выстрела. Широким снопом вылетают из орудия пули. Они хорошо поражают живые цели – наступающую пехоту или конницу, буквально сметают ее с лица земли.
Картечь дожила до наших дней: она применяется при стрельбе из малокалиберных орудий, не имеющих шрапнели, для отражения атаки противника, для самообороны (рис. 80).
Но у картечи есть существенный недостаток: шаровые пули ее быстро теряют скорость, и поэтому картечь действует на дальности не больше 150-500 метров от орудия (в зависимости от калибра пуль и силы заряда).
Капитан английской артиллерии Шрапнель в 1803 году предложил наполнять пулями гранату и таким способом посылать пули дальше 500 метров. Вместе с пулями он всыпал, конечно, в свой снаряд и небольшой разрывной заряд пороха (рис. 81).
«Картечная граната» – так был назван этот снаряд, – разрывалась, как всякая граната, и осыпала неприятеля, кроме осколков, еще и пулями.
В очко этого снаряда, как и в гранату, вставляли деревянную трубку с пороховым составом.
Если при стрельбе оказывалось, что трубка горит слишком долго, для следующих выстрелов часть ее отрезали. И вскоре заметили, что лучше всего снаряд поражает, когда он разрывается еще в полете, в воздухе, и осыпает людей пулями сверху.
Но в шаровом снаряде помещалось мало пуль, всего штук 40-50. Да из них еще добрая половина пропадала зря, улетая вверх (рис. 81). Эти пули, потеряв скорость, падали затем на землю, как горох, и не причиняли противнику вреда.
«Вот если бы удалось направить все пули в цель, а не давать им разлетаться во все стороны! Да еще заставить снаряд разрываться там, где нужно, а не там, где трубке вздумается его разорвать», – мечтали артиллеристы в начале девятнадцатого века.
Но лишь в конце этого столетия удалось технике добиться выполнения и того, и другого пожеланий.
Теперешняя шрапнель – так ее назвали по имени изобретателя – послушный воле артиллериста снаряд.

Рис. 82. Современная шрапнель в полете и в момент разрыва

Она несет в себе пули до того места, где ей «приказано» разорваться (рис. 82).
Это как бы маленькое летящее орудие: оно производит выстрел тогда, когда это нужно стреляющему, и осыпает пулями цель (рис. 83 и 84).

Рис. 83. В окопе или за деревом можно укрыться от шрапнельных пуль

Рис. 84. На такой площади при удачном разрыве шрапнели ее пули наносят действительное поражение

В продолговатой шрапнели немало пуль: в 76-миллиметровой – около 260; в 107-миллиметровой – около 600 шаровых пуль из сплава свинца и сурьмы.

Рис. 85. При низком разрыве шрапнели разлет пуль меньше, а падают они гуще

Густой сноп этих пуль при удачном разрыве осыпает площадь около 150-200 метров в глубину и 20-30 метров в ширину – почти треть гектара.
Это значит, что пули одной удачно разорвавшейся шрапнели покроют в глубину участок большой дороги, по которому идет в колонне целая рота – 150-200 человек с пулеметными двуколками. В ширину же пули покроют всю дорогу с ее обочинами.
У шрапнели есть еще одно замечательное свойство: если стреляющему командиру надо, чтобы разрывы получились пониже, а пули падали погуще, достаточно подать соответствующую команду, и шрапнель разорвется ниже. Сноп пуль будет короче и уже, но зато пули лягут гуще (рис. 85).
Механизм, который позволяет управлять шрапнелью, – это ее «дистанционная трубка» (рис. 86).

Рис. 86. «Дистанционная трубка»

В дистанционной трубке есть приспособление, похожее на то, которое вы видели уже во взрывателе. Как и там, здесь тоже есть ударник с капсюлем и жало. Но тут они как бы поменялись местами: ударник находится не позади, а впереди жала; чтобы наткнуться на жало, капсюлю надо двинуться вместе с ударником уже не вперед, а назад. Такое движение ударника назад и происходит непременно в момент выстрела. Ударник – тяжелый металлический стаканчик; при выстреле, когда снаряд резко двинулся вперед, ударник по инерции стремится остаться на месте, оседает, а из-за этого капсюль, прикрепленный ко дну ударника, накалывается на жало.
Взрыв капсюля в дистанционной трубке происходит, следовательно, очень рано – еще до вылета снаряда из орудия.
Но взрыв этот не сразу передается вышибному заряду, он только зажигает порох в «передаточном канале» (рис. 86), а вслед за тем начинает медленно гореть специальный пороховой состав, запрессованный в кольцевом желобке «верхней дистанционной части» трубки (то-есть в ее верхнем кольце).
Пробежав по этому желобку, пламя добирается до пороха в таком же желобке «нижней дистанционной части». Оттуда-через «запальное отверстие» и передаточный канал – пламя попадает в «петарду» (или пороховую камору). Взрыв в петарде вышибает латунный кружок, которым закрыто дно трубки, и огонь передается дальше, в «центральную трубку» снаряда, наполненную пороховыми цилиндриками (рис. 82).
Быстро пробежав по ней, огонь взрывает «вышибной заряд» шрапнели.
Головка снаряда отрывается, и пули вылетают из шрапнели. Как видите, пламени приходится проделать достаточно длинный путь, прежде чем оно вызовет, наконец, разрыв шрапнели.

Рис. 87. Так «устанавливают» дистанционную трубку с помощью ключа

Но это сделано нарочно: пока пламя передвигается по каналам и желобкам колец, шрапнель достигает намеченного заранее места.
Стоит нам только чуть удлинить путь пламени – и шрапнель разорвется позже. Наоборот, если мы сократим пламени его путь, сократим время горения, шрапнель разорвется раньше.
Все это достигается соответствующим устройством дистанционной трубки.
Нижнее дистанционное кольцо трубки поворачивается с помощью особого ключа, а иногда и просто рукой, и устанавливается на любое деление (рис. 87).
В некоторых трубках эти деления наносят так, чтобы каждое из них соответствовало дальности полета снаряда на 50 метров. Поставив кольцо делением «100» против риски (черточки) на «тарели», получим разрыв снаряда на удалении 50x100 = 5000 метров от орудия. А если прибавим еще одно деление, то шрапнель разорвется в 5 050 метрах от орудия. Это удобно потому, что деления прицела орудия имеют такую же нарезку: если прибавим одно деление прицела, снаряд полетит дальше на 50 метров. Незачем долго считать: достаточно скомандовать одинаковую установку прицела и трубки, например: «Прицел 100, трубка 100».
Некоторые трубки имеют нарезку в секундах: если, например, поставить кольцо такой трубки на деление «20», то снаряд разорвется через 20 секунд. Каждое такое деление трубки разделено еще на пять маленьких делений. Так что, если установку в 20 секунд увеличим на одно маленькое деление, то снаряд разорвется через 20,2 секунды. Нужную установку такой трубки определяют по специальным таблицам стрельбы.
В любой трубке весь секрет заключается в том, что когда мы поворачиваем нижнее кольцо, устанавливая его на то или другое деление, то этим самым мы передвигаем и сквозной канал нижнего кольца.

Рис. 88. Путь пламени в дистанционной трубке и действие ее, при установки на разрыв в воздухе

Для того чтобы понять, какое это имеет значение, нужно совершенно ясно представить себе путь пламени в дистанционной трубке (рис. 88).
Путь этот слагается из четырех частей. Первая часть – пламя бежит по желобку верхнего кольца трубки. Вторая часть – пламя пробегает по короткому сквозному каналу из верхнего кольца в нижнее. Третья часть – желобок нижнего кольца. Четвертая часть – весь оставшийся путь до «вышибного заряда».
Из всех этих отрезков пути самые длинные по времени – верхний и нижний желобки. При установке на полное время горения трубки пламени нужно пробежать верхний желобок до самого конца, только тогда оно может спуститься через кагал в нижний желобок. И снова – нужно пробежать весь нижний желобок от начала до конца, чтобы потом пуститься в дальнейший путь.
Но вот мы поворачиваем нижнее кольцо так, что сквозной канал соединяет теперь не конец верхнего желобка с началом нижнего, а середины обоих желобков. Это сразу сильно сократит путь пламени: теперь ему не нужно уже пробегать по обоим желобкам с начала до конца каждого: достаточно пробежать половину верхнего и затем половину нижнего. Путь пламени по времени сократится вдвое.

Рис. 89. Путь пламени в дистанционной трубке и действие ее при установке «на картечь»


Рис. 90. Путь пламени в дистанционной трубке и действие ее при установке «на удар»

Передвигая нижнее кольцо, можно, следовательно, изменять и время горения трубки.
Можно не только установить трубку на то или иное время горения, но и получить, при желании, почти мгновенный разрыв снаряда.

Рис. 91. В момент встречи с преградой ударник продвинулся вперед и капсюль накололся на жало; так действует ударный механизм дистанционной трубки

Если установить нижнее кольцо буквой «К» против риски на тарели, то сквозной канал соединит самое начало верхнего желобка с самым концом нижнего желобка, огонь быстро передастся из головки трубки, от капсюля, внутрь снаряда (рис. 89). Шрапнель разорвется в 10-20 метрах от орудия и осыплет пулями площадь до 500 метров перед орудием.
Это так называемая установка «на картечь». Так устанавливают шрапнель, когда надо отразить атаку пехоты или конницы на орудия. Шрапнель действует при этом наподобие картечи. Некоторые дистанционные трубки прямо на заводе устанавливаются «на картечь».
Если же поставить против риски буквы «УД» на нижнем кольце, огонь из верхнего кольца не передастся вовсе в нижнее: ему помешает перемычка, против которой придется сквозной канал нижнего кольца (рис. 90).
Дистанционная часть трубки в этом случае не может вызвать разрыв снаряда.
Но у трубки есть еще и ударный механизм, подобный механизму взрывателя УГТ (рис. 91).
Когда разрыв снаряда не будет вызван дистанционным приспособлением, его вызовет другое приспособление – ударное; шрапнель разорвется, подобно гранате, от удара о землю.
Поэтому-то дистанционная трубка шрапнели и называется трубкой «двойного действия».

Рис. 92. Действие дистанционной гранаты; точками показано, на какой площади соколки ее наносят действительное поражение

Не одну только шрапнель снабжают дистанционной трубкой. Иногда ввертывают дистанционную трубку и в гранату. Тогда можно вызвать разрыв гранаты в воздухе (рис. 92), поразить воздушную цель (самолет) или же осколками достать бойцов, укрывшихся в окопах и ямах. Такую гранату обычно называют «бризантной» или «дистанционной» гранатой. Чаще всего применяют ее для стрельбы по самолетам.
Таким образом, дистанционная трубка находит теперь очень широкое применение, – не только в шрапнели, но и в гранатах, не только при стрельбе по наземным целям, но и при стрельбе по воздушным целям.
Однако у послушной, вообще говоря, дистанционной трубки бывают все же свои капризы: пороховой состав по-разному горит при разном атмосферном давлении, а на большой высоте, где давление совсем небольшое, трубка и вовсе тухнет; кроме того, трубка очень чувствительна к сырости.
Для предохранения от сырости трубку покрывают колпаком, который снимают только перед самой стрельбой.
Но не всегда это помогает: иной раз дистанционная трубка все же подводит.
Вот почему сейчас появились образцы более точной трубки, в которую для отсчета времени вставлен как бы часовой механизм, работающий с точностью до десятой доли секунды.
Стрельба снарядами с такими «секундомерами» выгодна тем, что часовой механизм действует очень точно и работа его почти не зависит от атмосферных условий.
Но зато такие трубки-секундомеры очень дороги и трудны в изготовлении. Их применяют главным образом там, где нужна особенно большая точность, – в зенитной артиллерии.

Затихнет шрапнель, и начнется апрель.
На прежний пиджак поменяю шинель.
Вернутся полки из похода.
Хорошая нынче погода.

Булат Окуджава

Строго говоря, на английском его фамилия звучит как Шрапнэл , однако детище этого английского офицера и изобретателя куда более известно, чем он сам, и если о шрапнельных снарядах знают практически все, то о человеке, который их придумал – лишь историки и узкие специалисты. В немногочисленных и скупых исторических справках, как правило, дающих лишь годы жизни и краткую характеристику, укладывающуюся в одно предложение, его фамилия указывается как Шрапнель , поэтому мы не будем нарушать устоявшуюся традицию, тем более, что генерал артиллерии Генри Шрапнель, которого потомки назвали «убийцей пехоты», разделил судьбу многих изобретателей, чьи грандиозные творения закрыли своей тенью собственных создателей.

Детище Шрапнеля изменило рисунок войны: как некогда мушкет положил конец главенству конницы на полях сражений, так разрывной снаряд вывел на первые роли артиллерию, которая ураганным огнем буквально перемалывала целые полки в кровавую кашу. Наверняка уважаемый читатель знаком с историей атаки английской легкой бригады под Балаклавой 25 октября 1854 года, которая была буквально выкошена русскими пушками. Знаем мы и о героическом и трагичном сражении при Седане 1 сентября 1870 года, о храбрых французских кирасирах генерала Вимпффена, снова и снова бросавшихся на прорыв, желающих спасти честь императора и Франции… и погибших под ураганным огнем прусских пушек, отлитых на заводах Круппа. Но это все было потом, а сам Генри Шрапнель хоть и не застал подлинного триумфа своего детища, все же увидел его дебют на поле битвы.

Генри Шрапнель

Попытки создать снаряд с разбрасываемым поражающим элементом предпринимались задолго до Шрапнеля. Первые упоминания о чем-то подобном относятся к осаде турками Константинополя в 1453 году и описывают нечто, напоминающее канистру, «снаряженную» металлическим ломом и камнями. Прототип разрывного снаряда, известного как «летающая мина» (fladdermine) разработал в 1573 году немец Самуэль Циммерман, уроженец Аугсбурга. Другим примером движения военной мысли в данном направлении служит картечь (canister-shots, case-shots) и так называемый «виноград» (grape-shots), о котором стоит рассказать подробнее.

Картечь

Grape-shots в начале XVIII века представляли собой основание в виде деревянного диска, из центра которого перпендикулярно основанию шел деревянный же стержень, вокруг которого размещались маленькие металлические ядра. Для придания устойчивости конструкция помещалась в плотный матерчатый мешочек и «армировалась» крепким шнуром. Впоследствии появились grape-shots, состоящие из двух или трех ярусов, отделенных друг от друга металлическими дисками. Со временем «виноград» был практически полностью вытеснен картечью.

Grape-shots

Однако именно Генри Шрапнель первым создал оружие, эффективно действующее против больших скоплений живой силы противника на значительном расстоянии (чего не могла реализовать картечь, например), которое было успешно апробировано в бою в ходе Наполеоновских войн. Оружие, которое было названо по имени создателя лишь в июне 1852 года, через десять лет после его смерти.

Per aspera ad astra

О ранних годах Генри Шрапнеля известно немного. Будущий «убийца пехоты» появился на свет 3 июня 1761 года в имении Мидвей Мэнор в Брэдфорде-на-Эйвоне и был младшим из девяти детей в семье зажиточного торговца тканями Захарии Шрапнэла и его жены Лидии. Молодой человек мог позволить себе офицерский патент (звания в британской армии можно было приобретать за деньги) и был зачислен в королевскую артиллерию 9 июля 1779 года. С 1780-го по 1784-й Шрапнель служил на Ньюфаундленде, а затем вернулся в Англию, дабы посвятить все свое время и наличные средства разработке нового орудийного снаряда – полого ядра, начиненного свинцовыми пулями и порохом и снабженного запалом с функцией замедлителя.

Шрапнельный снаряд в разрезе

Идея состояла в том, чтобы объединить два вида снарядов – картечь и бомбу (полое ядро с запальной трубкой, начиненное порохом), чтобы взять от первого убойный эффект против живой силы противника, а от второго – мощность взрыва и радиус поражения. Один офицер-инструктор при Королевской Лаборатории (структурное подразделение Королевского Арсенала в Вулвиче) отмечал, что эффект от действия такого снаряда зависит «не от взрыва, силы которого достаточно, чтобы разорвать оболочку, но не достаточно, чтобы рассеивать поражающий элемент, но главным образом от скорости, которая сообщалась осколкам снаряда в момент взрыва ».

Прототип, разработанный Шрапнелем, был полностью рабочим, хотя время от времени возникали проблемы с преждевременной детонацией пороха, вследствие чего снаряд взрывался или еще в стволе, или спустя мгновения после выстрела. Это было вызвано, с одной стороны, несовершенной конструкцией запала, а с другой – трением между порохом и поражающим элементом внутри снаряда во время ускорения вдоль орудийного ствола.

В 1787 году лейтенант королевской артиллерии Генри Шрапнель получил назначение в Гибралтар, где продолжил свои изыскания, попутно в подробностях изучая события 1779–1783 годов, известные как Большая осада Гибралтара, в особенности – опыт применения артиллерии. Наконец, спустя полгода после своего прибытия в Гибралтар, Шрапнель смог показать командиру гарнизона свои наработки, о чем впоследствии сделал запись: «Эксперимент был произведен в Гибралтаре 21 декабря 1787 года в присутствии Его Превосходительства генерал-майора О’Хара с 8-дюймовой мортирой, которая была заряжена полым ядром с двумя сотнями мушкетных пуль и порохом, необходимым для взрыва. Был произведен выстрел в сторону моря с возвышенности в 600 футов (~ 183 м) над уровнем воды, снаряд взорвался за полсекунды до соприкосновения с водой ».

Сравнительное воздействие пули и картечи на хрупкий человеческий организм

Испытания произвели на старших офицеров положительное впечатление, однако Шрапнель не смог убедить генерал-майора О’Хара взять проект под личный патронаж (что обеспечило бы более скорое продвижение проекта в военной среде Великобритании).

Прослужив в Гибралтаре в общей сложности четыре года (три из которых были посвящены демонстрационным испытаниям снаряда и попыткам убедить командование дать проекту «зеленый» свет), в начале 1791-го Шрапнель получил перевод в Вест-Индию, где пробыл два года и, вернувшись в Англию, был повышен до капитан-лейтенанта (промежуточное звание между лейтенантом и капитаном, было выведено из практики в первой трети XIX века). Во время пребывания на Карибах он подал бумагу на имя Главного Распорядителя Вооружений (Master General of the Ordnance, MGO), где просил о поддержке своего проекта и о возможности демонстрации для более широкой аудитории.

Письмо Шрапнеля в итоге попало на рассмотрение в комиссию Артиллерийского Совета (Board of Ordnance), где и пролежало без какого-либо вердикта несколько лет. Когда в 1793 году Шрапнель ненадолго вернулся в Англию, ему было не до лоббирования своего ходатайства в совете – едва получив повышение, он был прикомандирован к экспедиционному корпусу герцога Йоркского во Фландрии (где впоследствии получил ранение в боях с войсками Французской Республики).

Как работает шрапнельный снаряд

По возвращении в Англию в 1795 году теперь уже капитан Шрапнель продолжил совершенствовать свой снаряд, готовя повторный доклад для комиссии, который и подал со всеми подробностями в 1799 году. Однако и здесь его ждало разочарование – после затянувшегося на два года «рассмотрения» проекту было отказано в поддержке. Тем не менее, капитан решил сражаться с бюрократическим монстром до конца и буквально забрасывал комиссию посланиями до тех пор, пока 7 июня 1803 года она не подала отчет в Совет, где положительно отзывалась об эффекте, производимом снарядами Шрапнеля.

Несмотря на то, что до конца решить проблему преждевременной детонации не удалось, результаты новых испытаний были обнадеживающими, и новый тип снарядов был включен в перечень стандартных боеприпасов для полевой армии. Что же касается самого Генри Шрапнеля, то 1 ноября того же 1803 года он был произведен в майоры.

Тем не менее, у снаряда по-прежнему оставалась проблема ранней детонации. Запальная трубка, вставлявшаяся в ядро, делалась из самшита и была полой внутри. Полость заполнялась некоторым количеством пороха, скорость сгорания которого отмечалась делениями, наносимыми на внешнюю стенку запала, где каждое деление соответствовало секунде горения. Соответственно, орудийный расчет регулировал время детонации того или иного снаряда, просто отпиливая трубку нужной длины, а затем запал аккуратно вводился в снаряд при помощи молоточка. Однако для того, чтобы качественно отпилить нужное количество делений и не повредить трубку, требовались определенные навыки и опыт, недостаток которых порой и приводил к незапланированной детонации.

Многообразие и мультиснарядовость!

В 1807 году было решено внести некую систематизацию в этот процесс, и запалы стали выпускаться серийно под те или иные дистанции стрельбы, а коробочки для них раскрашивали в разные цвета, каждый из которых соответствовал той или иной дистанции выстрела. В результате постоянной работы Шрапнеля над этим недостатком, впоследствии его удалось свести к минимуму – детальные испытания снарядов в 1819 году показали, что ранняя детонация наблюдалась всего в 8% от общего количества, а отказ предохранителя («слепое» ядро – неразорвавшееся) – в 11%.

Боевое крещение снаряды Шрапнеля получили 30 апреля 1804 года во время атаки на форт Новый Амстердам в Голландской Гвиане (Суринам). Командовавший британской артиллерией в том бою майор Уильям Уилсон отмечал: «Снаряд обнаружил настолько потрясающий эффект, что гарнизон Нового Амстердама поспешил сдаться на нашу милость уже после второго залпа. Враг был поражен и просто не мог понять, каким образом он несет потери от мушкетных пуль на таком большом расстоянии ». В том же году, 20 июля, Генри Шрапнель был повышен в звании до подполковника (lieutenant-colonel).

Примеры верного и неверного соотношения высоты прицела и длины запальной трубки

В январе 1806-го ядра Шрапнеля несли смерть на юге Африки, где британцы восстанавливали свой контроль над нидерландской Капской колонией, затем – в Италии, в июле того же года, во время битвы при Майде. Новое оружие быстро пришлось ко двору и с каждым годом использовалось все чаще.

Amat victoria curam

«Помолитесь за полковника Шрапнеля от моего имени за его снаряды – они творят чудеса! »

До появления шрапнельных снарядов британские артиллеристы вынуждены были полагаться на цельные ядра, если противник находился вне зоны действия картечи. Диапазон действия картечи составлял примерно 300 метров, диапазон действия ядра – от 900 (легкое орудие) до 1400 метров (тяжелое орудие).

Порой ядра давали хороший результат, особенно если цель находилась на ровной твердой поверхности – тогда артиллерия стреляла с таким расчетом, чтобы ядро рикошетило от земли и совершало несколько «прыжков» (подобно камешку по водной глади), нанося тяжелые потери неприятельским колоннам. Однако даже при этом ядро не было особо эффективно против пехоты, и такая тактика могла принести результаты лишь при наличии большого количества орудий.

Если же армия испытывала нехватку пушек (как это было, например, с британской армией Веллингтона в ходе Пиренейской кампании), огонь ядрами по живой силе противника не мог в нужной мере сказаться на его боеспособности или боевом духе. Появление разрывных снарядов Шрапнеля буквально изменило правила игры. Теперь британская артиллерия могла распространять поражающий эффект картечи на ранее недоступные расстояния и наносить серьезные потери неприятельским полкам, находящимся, по их мнению, в полной безопасности.

Картечный снаряд, Гражданская война в США

Для того, чтобы снаряды действовали эффективно, надлежало соблюсти верное соотношение высоты прицела и длины запальной трубки, иначе снаряд мог взорваться раньше времени, «перелететь» или сдетонировать слишком низко/высоко, вследствие чего цель оказывалась вне его радиуса поражения. Иными словами, чтобы чудо-оружие сработало как надо, орудийный расчет должен был правильно подготовить выстрел. Для того, чтобы была лучше видна зона падения осколков, подготовительные стрельбы проводились, как правило, по воде.

Впервые массово снаряды Шрапнеля были применены в ходе Пиренейской кампании в августе 1808 года, в сражениях при Ролисе и Вимейру. Генерал Артур Уэлсли (будущий герцог Веллингтон) высадился в Португалии во главе экспедиционного корпуса, рассчитывая выбить с полуострова французов, и вскоре после высадки столкнулся с войсками генерала Жюно. Подполковник Уильям Роуб впоследствии писал Шрапнелю: «Я подождал несколько дней, пока не собрал, наконец, всю доступную информацию, касающуюся эффекта, который произвели Ваши снаряды в столкновениях с противником 17-го и 21-го [августа 1808-го года], и теперь могу сказать Вам, что это было превосходно для всей нашей армии… Я не счел бы свой долг выполненным, если бы не отметил, какой удачей стало оружие, которым Вы нас снабдили. Я уведомил сэра Артура Уэлсли, что намерен написать Вам, и осведомился, будет ли на то его согласие, и в ответ услышал «Вы можете высказываться как Вам угодно, никакие слова не будут чрезмерными, ибо никогда доселе наши пушки не стреляли так эффективно» .

Военные круги Великобритании быстро осознали всю важность открытия, которое еще несколько лет назад воспринималось как причуда настырного майора. Министр иностранных дел лорд Каннинг заявил, что отныне «ни одна экспедиция не обойдется без них » (ядер Шрапнеля), однако сам изобретатель не очень радовался свалившейся на него славе. Он писал что «…изобретение не должно ни в коем случае стать достоянием общественности, дабы неприятель не осознал в полной мере его значение ».

Его голос был услышан, и вскоре сохранение секрета снаряда стало вопросом национальной безопасности. Капитан Джеймс Мортон Спирмен, автор фундаментального «Британского артиллериста» (The British Gunner, исчерпывающий мануал, впервые напечатанный в 1844-м году), в конце 1812 года отмечал, что было «запрещено говорить что-либо по поводу устройства этих снарядов… этот запрет возник из естественного желания сохранить в своих руках секрет этого разрушительного оружия ».

Шрапнельный снаряд, выпущенный во время осады Виксберга в 1863 году

Нужно отметить, что для действующей армии (а именно ее имеет в виду служивший там Спирмен), особенно находящейся на подконтрольной неприятелю территории, данные меры были вполне рациональны, учитывая то, что в лагере вполне могли находиться французские шпионы.

Противник, однако, вскоре понял, что имеет дело с чем-то доселе невиданным и пугающим. Капитан Фредерик Клейсон из 43-го полка писал своему знакомому, гражданскому инженеру Джону Робаку, что «на самом деле французы так страшатся этого нового инструмента войны, что многие из их гренадеров, взятых нами в плен, говорили, что не могли держать строй и были пленены буквально лежа на земле – под прикрытием кустов или глубоких канав ».

Французы прозвали новое оружие англичан «черным дождем». Полковник Максимилиан-Себастьян Фуа, командир французской батареи из десяти орудий, вспоминал: «Их полые ядра первым же залпом выкосили шеренги идущего впереди отряда, затем обрушились на основные силы, артиллерия 1-го дивизиона и резерва попыталась ответить, но вышло слабо ». Лейтенант Дениэл Бурчер отмечал, что, судя по рассказам испанцев, французы верили, что британцы каким-то образом отравляли шарики в ядрах, поскольку раненные ими, как правило, не выздоравливали.

Осада Гибралтала, гравюра 1849 года

На самом деле у французов был образец ядра Шрапнеля – они захватили такое еще в 1806 году под Майдой в Италии. Наполеон, сам будучи прекрасным артиллеристом, отдал распоряжение разобраться в его устройстве и сделать рабочий аналог, однако они не смогли решить проблему предохранителя и не добились эффективной детонации снаряда на нужном расстоянии, поэтому вскоре все работы в этом направлении были свернуты.

Сыграли свою роль снаряды Шрапнеля и в завершающем акте Наполеоновой драмы – сражении при Ватерлоо 18 июня 1815 года. Именно шрапнельными снарядами британцы «утюжили» лес к югу от Угумона, через который наступали колонны Жерома Бонапарта. Младший офицер Джон Таунсенд вспоминал: «Они [ядра] достигли очень большого эффекта, как в лесу, так и во фруктовых садах Угумона против масс пехотных колонн Жерома. Насколько эффективны они были в расчистке деревьев у Угумона – настолько существенные просеки оставляли они в атакующих французских колоннах ».

Полковник сэр Джордж Вуд, командующий артиллерией, после сражения писал Шрапнелю: «Тогда герцог приказал открыть огонь вашими [снарядами] по ферме, благодаря чему удалось выбить их с такой серьезной позиции, которая, если бы Бонапарт успел подтянуть туда свою артиллерию, могла обеспечить им победу ».

Схема, демонстрирующая время разрыва шрапнельного снаряда при выстрелах на различные расстояния из американской трехдюймовки времен Первой Мировой

Еще в 1814-м, за год до триумфа своего детища при Ватерлоо, Генри Шрапнель был удостоен внушительной ежегодной пожизненной пенсии в 1200 фунтов (76000 фунтов по современному курсу), однако бюрократическая волокита не позволила ему получать всю сумму, и на руки ему доставались лишь жалкие остатки от этих больших цифр. В 1819-м он был произведен в генерал-майоры, а спустя шесть лет, в 1825-м году, ушел с действительной военной службы. Уже будучи в отставке, 10 января 1837-го был произведен в генерал-лейтенанты. С 1835-го жил в имении Пертри Хаус в Саутгемптоне, где и скончался 13 марта 1842-го года в возрасте 80-и лет.

Лишь спустя десять лет после его смерти, во многом благодаря активному лоббированию вопроса его сыном, Генри Нидхэмом Скроупом, изобретенный Шрапнелем снаряд официально был назван в его честь (до этого назывался просто «сферическим» – spherical case).

Со временем шрапнельный снаряд претерпел ряд изменений и усовершенствований, к началу XX уже ничем не напоминая тот первый опытный образец, некогда демонстрировавшийся коменданту Гибралтара молодым Генри Шрапнелем. Однако именно изобретение Шрапнеля стало тем поворотным моментом в истории военного дела, который изменил рисунок боя раз и навсегда.

Пройдут десятилетия, и увеличится поражающий эффект, увеличится дистанция выстрела, «убийца пехоты» будет кровью писать историю империй на полях битв. Но всего этого не случилось бы, не найдись некогда в британской королевской артиллерии один упрямец, не пожелавший «проглотить» игнорирование со стороны высоких чинов и скепсис командиров, упрямец, не жаждавший славы и не наживший на своем творении ничего, кроме восторженных посланий от солдат и офицеров, побеждавших созданным им оружием врагов короны. Подобно богу войны в сочинениях древних эллинов, он лишь направлял великие события, незримый для сражающихся, но неизменно определяющий финальный исход.

Шрапнель получила свое название в честь ее изобретателя английского офицера Генри Шрапнеля, разработавшего этот снаряд в 1803 году. В первоначальном виде шрапнель представляла разрывную сферическую гранату для гладкоствольных пушек, во внутреннюю полость которой вместе с дымным порохом засыпались свинцовые пули.

В 1871 году русский артиллерист В.Н.Шкларевич разработал для только что появившихся нарезных орудий диафрагменную шрапнель с донной камерой и центральной трубкой (см. рис.1 ). Она еще не отвечала современному понятию шрапнели, так как имела фиксированное время горения трубки. Только через два года после принятия на вооружение первой русской дистанционной трубки образца 1873 года шрапнель обрела свой законченный классический облик. Этот год может считаться годом рождения русской шрапнели.

Дистанционная трубка 1873 года имела одно поворотное дистанционное кольцо с медленно горящим пиротехническим составом (см. рис.2 ). Максимальное время горения состава составляло 7,5 с, что позволяло вести огонь на дальность до 1100 м.

Инерционный механизм воспламенения трубки при выстреле (боевой винт) хранился отдельно и вставлялся в трубку непосредственно перед выстрелом. Пули отливались из сплава свинца с сурьмой. Пространство между пулями заливалось серой. Характеристики русских шрапнельных снарядов к нарезным орудиям обр. 1877 г. калибра 87 и 107 мм представлены в таблице 1 .

таблица 1

Калибр, мм 87 107
Масса снаряда, кг 6,85 12,5
Начальная скорость, м/с 442 374
Число пуль 167 345
Масса одной пули, г 11 11
Суммарная масса пуль, кг 1,83 3,76
Относительная масса пуль 0,27 0,30
Масса порохового
вышибного заряда, г
68 110

Пулевая шрапнель вплоть до первой мировой войны составляла основную часть боекомплектов орудий полевой конной артиллерии, вооруженной 76-мм пушками, и значительную часть боекомплектов орудий более крупных калибров (см. рис.3 ). Русско-японская война 1904–1905 гг., в которой японцами впервые в массовых масштабах были применены ударные осколочные гранаты, снаряженные мелинитом, поколебала позиции шрапнели, однако в первом периоде Мировой войны она еще оставалась наиболее массовым снарядом. Высокая эффективность ее действия по открыто расположенным скоплениям живой силы подтверждалась многочисленными примерами. Так, 7 августа 1914 г. 6-я батарея 42-го французского полка, открыв огонь шрапнелью калибра 75 мм на дальности 5000 м по походной колонне 21-го драгунского германского полка, шестнадцатью выстрелами уничтожила полк, выведя из строя 700 человек.

Однако уже в среднем периоде войны, характеризуемом переходом к массовому применению артиллерии и позиционным боевым действиям и ухудшением квалификации офицерского артиллерийского состава стали выявляться крупные недостатки шрапнели:

Малое убойное действие низкоскоростных сферических пуль шрапнели;

Полное бессилие шрапнели при настильных траекториях против живой силы, находящейся в окопах и ходах сообщениях, и при любых траекториях – против живой силы в блиндажах и капонирах;

Малая эффективность стрельбы шрапнелью (большое количество высотных разрывов и так называемых «клевков») слабообученным офицерским персоналом, в большом количестве пришедшим из резерва;

Дороговизна и сложность шрапнели в массовом производстве.

Поэтому в ходе войны шрапнель стала быстро вытесняться осколочной гранатой с взрывателем ударного действия, не имеющей этих недостатков и обладающей к тому же сильным психологическим воздействием. На заключительном этапе войны и в послевоенный период в связи с быстрым развитием военной авиации шрапнель стала использоваться для борьбы с самолетами. Для этой цели были разработаны стержневые шрапнели и шрапнели с накидками (в России – 76-мм стержневая шрапнель Розенберга, содержащая 48 призматических стержней массой 45–55 г, уложенных в два яруса, и 76-мм шрапнель Гартца, содержащая 28 накидок массой по 85 г каждая). Накидки представляли собой попарно связанные короткими тросами стальные трубки, залитые свинцом, предназначенные для перебивания стоек и растяжек аэропланов. Шрапнели с накидками использовались также для разрушения проволочных заграждений. В каком-то смысле шрапнели с накидками можно рассматривать как прототип современных стержневых боевых частей (см. рис. 4 и 5 ).

К началу второй мировой войны шрапнель почти полностью утратила свое значение. Казалось, время шрапнели ушло навсегда. Однако, как это часто бывает в технике, в 60-х годах неожиданно началось возвращение к старым шрапнельным конструкциям.

Основной причиной было повсеместное недовольство военных низкой эффективностью осколочных гранат с ударным взрывателем. Эта низкая эффективность имела следующие причины:

Низкую плотность осколков, присущую круговым полям;

Неблагоприятную ориентацию осколочного поля относительно поверхности земли, при которой основная масса осколков уходит в воздух и грунт. Использование дорогостоящих неконтактных взрывателей, обеспечивающих воздушный разрыв снаряда над целью, повышает эффективность действия осколков в нижней полусфере разлета, но принципиально не изменяет общего низкого уровня действия;

Малую глубину поражения при настильной стрельбе;

Случайный характер дробления снарядных корпусов, приводящий с одной стороны к неоптимальному распределению осколков по массе, с другой – к неудовлетворительной форме осколков.

При этом наиболее негативную роль играет процесс разрушения оболочки продольными трещинами, движущимися по образующим корпуса, приводящий к формированию тяжелых длинных осколков (так называемых «сабель»). Эти осколки забирают до 80% массы корпуса, увеличивая эффективность менее чем на 10%. Многолетние исследования по изысканию сталей, дающих высококачественные осколочные спектры, проводившиеся во многих странах, не привели к кардинальным сдвигам в этой области. Оказались безуспешными и попытки использования различных способов заданного дробления из-за резкого удорожания производства и снижения прочности корпуса.

К этому добавлялось неудовлетворительное (не мгновенное) действие ударных взрывателей, особенно ярко проявившееся в специфических условиях послевоенных региональных войн (залитые водой рисовые поля Вьетнама, песчаные ближневосточные пустыни, болотистые почвы нижнего Двуречья).

С другой стороны, возрождению шрапнели способствовали такие объективные факторы, как изменение характера боевых действий и появление новых целей и видов оружия, в том числе общая тенденция перехода от стрельбы по площадным целям к стрельбе по конкретным одиночным целям, насыщение поля боя противотанковыми средствами, возросшая роль малокалиберных автоматических систем, оснащение пехоты средствами индивидуальной бронезащиты, резко обострившаяся проблема борьбы с малоразмерными воздушными целями, в том числе с противокорабельными крылатыми ракетами. Важную роль сыграло также появление тяжелых сплавов на основе вольфрама и урана, резко повысивших пробивное действие готовых поражающих элементов.

В 1960-х годах в период вьетнамской кампании армия США впервые применила шрапнели со стреловидными поражающими элементами (СПЭ). Масса стальных СПЭ составляла 0,7–1,5 г, число в снаряде 6000–10000 шт. Моноблок СПЭ представлял набор стреловидных элементов, уложенных параллельно оси снаряда заостренной частью вперед. Для более плотной укладки может применяться также попеременная укладка заостренной частью вперед-назад. СПЭ в блоке залиты связующим веществом с пониженной адгезионной способностью, например, воском. Скорость выброса блока пороховым вышибным зарядом составляет 150–200 м/с. Отмечалось, что увеличение скорости выброса выше этих пределов за счет увеличения массы вышибного заряда и повышения энергетических характеристик пороха приводит к увеличению вероятности разрушения стакана и к резкому увеличению деформирования СПЭ вследствие потери их продольной устойчивости, особенно в нижней части моноблока, где наседающая нагрузка при выстреле достигает максимума. С целью предохранения СПЭ от деформации при выстреле в некоторых шрапнельных снарядах США применяется многоярусная укладка СПЭ, при которой нагрузка от каждого яруса воспринимается диафрагмой, в свою очередь, опирающейся на уступы центральной трубки.

В 1970-х годах появились первые боевые части со стреловидными ПЭ для неуправляемых авиационных ракет (НАР). Американская НАР калибра 70 мм с боевой частью М235 (1200 стреловидных ПЭ массой по 0,4 г с суммарной начальной скоростью 1000 м/с) при подрыве на дистанции 150 м от цели обеспечивает зону поражения с фронтальной площадью 1000 кв.м. Скорость элементов при встрече с целью составляет 500–700 м/с. НАР со стреловидными ПЭ французской фирмы «Томсон-Брандт» выпускается в вариантах, предназначенных для поражения легкобронированных целей (масса одного СПЭ 190 г, диаметр 13 мм, бронепробиваемость 8 мм при скорости 400 м/с). В калибре НАР 68 мм число СПЭ составляет соответственно 8 и 36, в калибре 100 мм – 36 и 192. Разлет СПЭ происходит при скорости снаряда 700 м/с в угле 2,5°.

Фирма «BEI Defence Systems» (США) проводит разработку высокоскоростных ракет HVR, снаряженных стреловидными ПЭ из вольфрамового сплава и предназначенных для поражения воздушных и наземных целей. При этом используется опыт, накопленный в процессе работ по программе создания отделяемого проникающего элемента кинетической энергии SPIKE (Separating Penetrator Kinetic Energy). Демонстрировалась высокоскоростная ракета «Persuader» («Шпоры») имеющая в зависимости от массы БЧ скорость 1250–1500 м/с и позволяющая поражать цели на дальности до 6000 м. БЧ исполняется в различных вариантах: 900 стреловидных ПЭ массой 3,9 г каждый, 216 стреловидных ПЭ по 17,5 г или 20 ПЭ по 200 г. Рассеивание ракеты не превышает 5 мрад, стоимость не более 2500 долларов.
Следует отметить, что противопехотные шрапнели со стреловидными ПЭ хотя и не входят в перечень официально запрещенного международными конвенциями оружия, но, тем не менее, негативно оцениваются мировым общественным мнением как негуманный вид оружия массового поражения. Об этом косвенно свидетельствуют такие факты, как отсутствие данных об этих снарядах в каталогах и справочниках, исчезновение их рекламы в военно-технической периодике и т. п.

Шрапнели малых калибров интенсивно развивались в последние десятилетия в связи с возрастанием роли малокалиберных автоматических пушек во всех видах вооруженных сил. Наименьший известный калибр шрапнельного снаряда составляет 20 мм (снаряд DM111 германской фирмы «Diehl» к автоматическим пушкам Rh200, Rh202) (см. рис.6 ). Последняя пушка состоит на вооружении БМП «Мардер» . Снаряд имеет массу 118 г, начальную скорость 1055 м/с и содержит 120 шариков, пробивающих на расстоянии 70 м от точки подрыва дюралевый лист толщиной 2 мм.

Стремление к уменьшению потери скорости ПЭ на полете привело к разработке снарядов с пулевидными удлиненными ПЭ. Пулевидные ПЭ уложены параллельно оси снаряда и за время одного оборота снаряда также совершают один оборот вокруг собственной оси и, следовательно, после выброса из корпуса будут гироскопически стабилизированы на полете.

Отечественный 30 мм шрапнельный (многоэлементный) снаряд, предназначенный для авиационных пушек Грязева-Шипунова ГШ-30, ГШ-301, ГШ-30К, разработан ГНПП «Прибор» (см. рис.7 ). Снаряд содержит 28 пуль массой 3,5 г, уложенных в четыре яруса по семь пуль в каждом. Выброс пуль из корпуса производится с помощью небольшого вышибного порохового заряда, воспламеняемого от пиротехнического замедлителя на дальности 800–1300 м от места выстрела. Масса патрона 837 г, масса снаряда 395 г, масса порохового заряда гильзы 117 г, длина патрона 283 мм, начальная скорость снаряда 875-900 м/с, вероятное отклонение начальной скорости 6м/с. Угол разлета пуль составляет 8°. Очевидным недостатком снаряда является фиксированная величина интервала времени между выстрелом и срабатыванием снаряда. Успешная стрельба такими снарядами требует высокой квалификации летчика.

Швейцарской фирмой «Эрликон-Контравес» производится 35-мм шрапнельный снаряд, AHEAD (Advanced Hit Efficiency and Destruction) для автоматических зенитных пушек, снабженных системой управления огнем (СУО), обеспечивающей подрыв снарядов на оптимальном расстоянии от цели (наземные буксируемые двуствольные системы «Скайгард» GDF-005, «Скайшилд 35», корабельные одноствольные установки «Скайшилд» и «Миллениум 35/100»). Снаряд снабжен высокоточным электронным дистанционным взрывателем, расположенным в донной части снаряда, а установка имеет в своем составе дальномер, баллистический вычислитель и надульный канал ввода временной установки. На дульном срезе орудия расположены три соленоидных кольца. С помощью первых двух колец, расположенных по ходу снаряда, производится замер скорости снаряда в данном выстреле. Измеренная величина совместно с дальностью до цели, измеренной дальномером, вводится в баллистический вычислитель, рассчитывающий полетное время, значение которого вводится в дистанционный взрыватель через кольцо с шагом установки 0,002 с.

Масса снаряда составляет 750 г, начальная скорость 1050 м/с, дульная энергия 413 кДж. Снаряд содержит 152 цилиндрических ГПЭ из вольфрамового сплава массой 3,3г (суммарная масса ГПЭ 500 г, относительная масса ГПЭ 0,67). Выброс ГПЭ происходит с разрушением снарядного корпуса. Относительная масса снаряда С q (масса в кг, отнесенная к кубу калибра в дм) составляет 17,5 кг/куб.дм, т. е. на 10 % превышает соответствующую величину для обычных осколочно-фугасных снарядов.

Снаряд предназначен для поражения самолетов и управляемых ракет на дальности до 5 км.

С методической точки зрения многоэлементный снаряд, снаряд AHEAD, боевые части НАР, заряд которых (пороховой или бризантный) не сообщает дополнительной осевой скорости, а выполняет по существу только функцию разделения, целесообразно выделить в отдельный класс так называемых кинетических пучковых снарядов (КПС), а термин «шрапнель» сохранить только за классическим шрапнельным снарядом, имеющим корпус с донным вышибным зарядом, обеспечивающим заметную дополнительную скорость ГПЭ. Примером конструкции КПС бескорпусного типа является снаряд с набором колец заданного дробления, запатентованный фирмой «Эрликон». Этот набор надет на полый стержень корпуса и поджат головным колпаком. Во внутренней полости стержня размещается небольшой заряд ВВ, рассчитанный таким образом, что он обеспечивает разрушение колец на осколки без сообщения им заметной радиальной скорости. В результате формируется узкий пучок осколков заданного дробления.

Основными недостатками пороховых шрапнелей являются следующие:

Отсутствует заряд бризантного ВВ и, как следствие, невозможно поражение укрытых целей;

Тяжелый стальной корпус (стакан) шрапнели выполняет по существу транспортировочную и ствольную функции и не используется непосредственно для поражения.

В связи с этим в последние годы началась интенсивная разработка так называемых осколочно-пучковых снарядов. Под ними понимают снаряд, снаряженный бризантным ВВ, с расположенным в передней части блоком ГПЭ, создающих осевой поток («пучок»), Являясь по виду главного поля аналогом пороховой шрапнели, снаряд выгодно отличается от нее наличием фугасного действия и продуктивным использованием металла корпуса для образования кругового осколочного поля.

Первые серийные осколочно-пучковые трассирующие снаряды HETF-T (35-мм снаряд DM42 и 50-мм снаряд M-DN191) были разработаны германской фирмой «Диль» (Diehl) для автоматической пушки Rh503 фирмы «Маузер», входящей в состав концерна «Рейнметалл» (Rheinmetall). Снаряды имеют донный взрыватель двойного действия (дистанционно-ударный), размещенный внутри корпуса снаряда и головной приемник команд, размещенный в головном пластмассовом колпаке. Приемник и взрыватель соединены электрическим проводником, проходящим через заряд ВВ. Благодаря донному инициированию заряда ВВ метание блока происходит за счет падающей детонационной волны, что увеличивает скорость метания. Легкий головной колпак не препятствует прохождению блока ГПЭ. (Рис. 8 )

Конический блок 35-мм снаряда DM41, содержащий 325 шт. сферических ГПЭ диаметром 2,5 мм, выполненных из тяжелого сплава (ориентировочная масса 0,14 г) опирается непосредственно на передний торец заряда ВВ массой 65 г. Масса снаряда DM41 – 610 г, длина снаряда 200мм (5,7 клб), общая масса патрона 1670 г, масса заряда пороха в патроне 341 г, начальная скорость снаряда 1150 м/с. Разлет ГПЭ происходит в корпусе с углом 40°. Ввод команды на вид действия и ввод временной установки производится бесконтактным способом непосредственно перед заряжанием.

В известной мере критическим элементом данной бездиафрагменной конструкции является прямая опора ГПЭ на заряд ВВ. При массе блока 0,14 х 325 = 45 г и ствольной перегрузке 50000 блок ГПЭ при выстреле будет давить на заряд ВВ с силой 2,25 т, что в принципе может привести к разрушению и даже воспламенению заряда ВВ. Обращает на себя внимание чрезмерно малая масса ГПЭ (0,14 г), явно недостаточная для поражения даже легких целей. Определенным недостатком конструкции является сферическая форма ГПЭ, понижающая плотность укладки блока и приводящая к уменьшению скорости его метания за счет потерь энергии на деформацию ГПЭ. Сопоставление 35-мм снарядов AHEAD фирмы «Эрликон» и HETF-T фирмы «Диль» приведено в таблице 2 .

таблица 2

Характеристика AHEAD HETF-T

Тип снаряда

Шрапнель Осколочно-пучковый

Взрыватель

Дистанционный Дистанционно-ударный

Ввод команд

После вылета При заряжании

Масса снаряда, г

750 610

Количество ГПЭ

152 325

Масса одного ГПЭ, г

3,3 0,14

Суммарная масса ГПЭ, г

500 45

Угол разлета, град.

10 40

Форма ГПЭ

цилиндр сфера

Осколочное круговое поле

нет есть

Проникающе-фугасное действие

нет есть

Стоимость (расч.-ориентир.), у.е.с.

5–6 1

Сравнительная оценка снарядов по критерию «стоимость–эффективность» при стрельбе по воздушным и наземным целям не выявляет ощутимого превосходства одного снаряда над другим. Это может показаться странным, учитывая огромную разницу масс осевого потока (у снаряда AHEAD на порядок больше). Объяснение, с одной стороны, заключается в очень высокой стоимости снарядов AHEAD (снаряд на 2/3 состоит из дорогостоящего и дефицитного тяжелого сплава), с другой – в резком увеличении возможности адаптации осколочно-пучкового снаряда HETF-T к условиям боевого применения. Например, при действии по противокорабельным крылатым ракетам (ПКР) оба снаряда одинаково не обеспечивают поражения цели по типу «мгновенное разрушение цели в воздухе», достигаемого пробиванием бронебойного корпуса и прониканием ГПЭ в заряд ВВ с возбуждением его детонации. В то же время прямое попадание в планер ПКР разрывного снаряда HETF-T фирмы «Диль» при установке взрывателя на ударное действие наносит значительно больший ущерб, чем прямое попадание инертного AHEAD, которое может быть реализовано установкой взрывателя на максимальное время.

Фирма «Диль» в настоящее время занимает ведущее положение в области разработки осколочных боеприпасов направленного осевого действия. К числу ее наиболее известных запатентованных разработок осколочно-пучковых боеприпасов относятся танковый снаряд, разделяющаяся ствольная мина, кассетный боевой элемент, спускающийся на парашюте с адаптивным раздельно-осевым действием. (Рис. 9, 10 ).

Значительный интерес представляют разработки шведской фирмы «Бофорс АБ». Ею запатентован осколочно-пучковый вращающийся снаряд с потоком ГПЭ, направленным под углом к оси снаряда. Подрыв в момент в момент совмещения оси блока ГПЭ с направлением на цель обеспечивается датчиком цели. Донное инициирование заряда ВВ обеспечивается донным детонатором, смещенным относительно оси снаряда и соединенным проводной связью с датчиком цели. (Рис.11 )

Фирмой «Рейнметалл» (ФРГ) запатентован оперенный осколочно-пучковый снаряд к гладкоствольной танковой пушке, предназначенный в первую очередь для борьбы с противотанковыми вертолетами (пат. №5261629 США). В головном отсеке снаряда расположен блок датчиков цели. После определения положения цели относительно траектории снаряда производится с помощью импульсных реактивных двигателей доворот оси снаряда на цель, отстрел головного отсека с помощью кольцевого заряда ВВ и подрыв снаряда с формированием направленного на цель потока ГПЭ. Отстрел головного отсека необходим для беспрепятственного прохода блока ГПЭ.

Отечественные патенты на осколочно-пучковые снаряды №2018779, 2082943,2095739, 2108538, 21187790 (патентообладатель НИИ СМ МГТУ им. Н.Э.Баумана) охватывают наиболее перспективные направления развития этих снарядов (Рис.12, 13 ). Снаряды предназначены как для поражения воздушных целей, так и для глубинного поражения наземных целей, и оснащены донными взрывателями дистанционного или неконтактного (типа «дальномер») действия. Взрыватель оснащен ударным механизмом с тремя установками, что позволяет использовать снаряд при стрельбе на обычные виды действия штатных осколочно-фугасных снарядов – осколочно-компрессионное, осколочно-фугасное и проникающе-фугасное. Мгновенный осколочный подрыв происходит с помощью головного контактного узла, имеющего электрическую связь с донным взрывателем. Ввод команды, определяющей вид действия, производится через головной или донный приемники команд.

Скорость блока ГПЭ как правило не превышает 400–500 м/с, т. е. на его ускорение расходуется весьма незначительная часть энергии заряда ВВ. Это объясняется с одной стороны малой площадью контакта заряда ВВ с блоком ГПЭ, а с другой – быстрым спадом давления продуктов детонации вследствие расширения снарядной оболочки. По данным высокочастотной оптической съемки и результатам компьютерного моделирования видно, что процесс радиального разлета оболочки идет значительно быстрее, чем процесс осевого движения блока. Стремление увеличить долю энергии заряда, переходящей в кинетическую энергию осевого движения ГПЭ, породило много предложений по реализации многоторцевых конструкций. (Рис.10 ).

Одной из наиболее перспективных сфер применения пучковых снарядов является танковая артиллерия. В условиях насыщения поля боя противотанковыми системами оружия проблема обороны танка от них является чрезвычайно острой. В тенденциях развития танкового оружия в последнее время наблюдается стремление к реализации принципа «бей равного», согласно которому основной задачей танка является борьба с танками противника как представляющими главную опасность, а оборона его от танкоопасных средств должна осуществляться сопровождающими его боевыми машинами пехоты, снабженными автоматическими пушками, и самоходными зенитными установками. Кроме того, считается несущественной проблема борьбы с танкоопасными средствами, находящимися в сооружениях, например в зданиях, при боевых действиях в населенных пунктах. При таком подходе осколочно-фугасный снаряд в боекомплекте танка считается ненужным. Например, в боекомплекте 120-мм гладкоствольной пушки германского танка «Леопард-2» имеется всего два типа снаряда – бронебойный подкалиберный DM13 и осколочно-кумулятивный (многоцелевой) DM12. Крайним выражением этой тенденции являются недавно принятые решения о том, что в состав боекомплекта разрабатываемых 140-мм гладкоствольных пушек США (ХМ291) и Германии (NPzK) будет входить только один тип снаряда – оперенный бронебойный подкалиберный.

Следует отметить, что концепция, исходящая из представления о том, что главную угрозу для танка создает танк противника, не подтверждается опытом военных действий. Так, в ходе четвертой арабо-израильской войны 1973 года потери танков распределялись следующим образом: от действия ПТРК – 50%, от действий авиации, ручных противотанковых гранатометов, противотанковых мин – 28%, от огня танков только – 22%.

Другая концепция, напротив, исходит из взглядов на танк как на автономную систему оружия, способную самостоятельно решать все боевые задачи, в том числе и задачу самообороны. Эта задача не может быть решена штатными осколочно-фугасными снарядами с ударными взрывателями по той причине, что при настильной стрельбе этими снарядами на осколочное поражение одиночных целей крайне неудовлетворительно согласуются плотность рассеивания точек падения снарядов и координатный закон поражения. Эллипс рассеивания, имеющий на дальности 2 км отношение больших осей примерно 50:1, вытянут в направлении стрельбы, тогда как зона поражения осколками располагается перпендикулярно этому направлению. В результате реализуется лишь очень небольшая площадь, где эллипс рассеивания и область поражения накладываются друг нa друга. Следствием этого является низкая вероятность поражения одиночной цели одним выстрелом, по различными оценкам не превышающая 0,15…0,25.

Конструкция многофункционального осколочно-фугасно-пучкового оперенного снаряда для гладкоствольной танковой пушки защищена патентами №№ 2018779, 2108538 РФ. Наличие тяжелого головного блока ГПЭ и связанное с этим смещение центра масс вперед увеличивает аэродинамическую устойчивость снаряда на полете и точность стрельбы. Разгрузка заряда ВВ от давления, создаваемого наседающей массой блока ГПЭ при выстреле, осуществляется вкладной диафрагмой, опирающейся на кольцевой уступ в корпусе, либо диафрагмой, выполненной заодно с корпусом.

ГПЭ блока выполнены из стали или тяжелого сплава на основе вольфрама (плотность 16…18 г/куб.см) в форме, обеспечивающей их плотную укладку в блоке, например, в форме шестигранных призм. Плотная укладка ГПЭ способствует сохранению их формы в процессе взрывного метания и уменьшает потери энергии заряда ВВ на деформацию ГПЭ. Требуемый угол разлета (обычно 10…15°) и оптимальное распределение ГПЭ в пучке могут быть обеспечены за счет изменения толщины оголовья, формы диафрагмы, размещения внутри блока ГПЭ вкладышей из легкосжимаемого материала, изменения формы фронта падающей детонационной волны. Предусмотрено управление углом разлета блока с помощью заряда ВВ, размещенного по его оси. Интервал времени между подрывами основного и осевого зарядов в общем случае регулируется системой управления подрывом снаряда, что позволяет получать оптимальные пространственные распределения ГПЭ и осколков корпуса в широком диапазоне условий стрельбы. Головной колпак с головным контактным узлом, заполненный внутри пенополиуретаном, должен иметь минимальную массу, что обеспечивает минимальную потерю скорости ГПЭ при взрывном метании. Более радикальным способом является сброс головного колпака с помощью пиротехнического устройства перед подрывом основного заряда или его разрушение с помощью заряда-ликвидатора. При этом должно быть исключено разрушающее воздействие продуктов детонации на блок ГПЭ. Оптимальная масса блока ГПЭ варьируется в пределах 0,1…0,2 от массы снаряда. Скорость выброса блока ГПЭ из корпуса в зависимости от его массы, характеристик заряда ВВ и других конструктивных параметров изменяется в диапазоне 300…500 м/с, начальная результирующая скорость ГПЭ при скорости снаряда 800 м/с составляет 1100…1300 м/с.

Оптимальная масса одиночного поражающего элемента, рассчитанная по условию поражения живой силы, оснащенной тяжелыми противопульными бронежилетами 5-го класса защиты по ГОСТ Р50744-95 «Бронеодежда», составляет 5 г. При этом обеспечивается также поражение большей части номенклатуры небронированной техники. При необходимости поражения более тяжелых целей со стальными эквивалентами 10… 15 мм масса ГПЭ должна быть увеличена, что приведет к снижению плотности потока ГПЭ. Оптимальные массы ГПЭ для поражения различных классов целей, уровни кинетической энергии, числа ГПЭ при массе блока 2,5 кг и плотности поля при угле полураствора 10° на дальности 20 м (радиус круга поражения 3,5 м, площадь круга 38 кв.м) приведены в таблице 3 .

таблица 3

Класс целей

Масса
одного
ГПЭ, г
Кинетич. энергия, дж, при скорости число
ГПЭ
Плот-
ность,
1/куб.м
500 м/с 1000 м/с

Живая сила в бронежилетах 5-го класса и небронированная техника

5 625 2500 500 13,2

Легкобронированные цели класса «А» (БТР, бронированные вертолеты)

10 1250 5000 250 6,6

Легкобронированные цели класса «В» (боевые машины пехоты)

20 2500 10000 125 3,3

Включение в состав боекомплектов танков двух типов осколочно-пучковых снарядов, предназначенных соответственно для борьбы с живой силой и бронетехникой, вряд ли осуществимо, учитывая ограниченный размер боекомплекта (в танке Т-90С – 43 выстрела) и без того уже большую номенклатуру снарядов (бронебойный оперенный подкалиберный снаряд (БОПС), кумулятивный снаряд, осколочно-фугасный снаряд, управляемый снаряд 9К119 «Рефлекс»). В отдаленной перспективе при появлении в танке быстродействующего сборочного манипулятора возможно применение модульных конструкций осколочно-пучковых снарядов со сменными головными блоками различного назначения (патент №2080548 РФ, НИИ СМ).

Ввод команды, определяющей вид действия, и ввод временной установки при стрельбе с траекторным разрывом производится через головной или донный приемники команд. Цикл работы системы управления подрывом включает в себя определение дальности до цели с помощью лазерного дальномера, расчет на бортовом компьютере полетного времени до упрежденной точки подрыва и ввод этого времени во взрыватель с помощью АУДВ (автоматического установщика дистанционного взрывателя). Так как упрежденная дальность подрыва является случайной величиной, дисперсия которой определяется суммой дисперсий дальности до цели, измеренной дальномером, и пути, пройденного снарядом к моменту подрыва, а указанные дисперсии достаточно велики, то и разброс упрежденной дальности оказывается чрезмерно большим (например, ±30 м при номинальном значении упрежденной дальности 20 м). Это обстоятельство предъявляет достаточно жесткие требования к точности системы управления подрывом (шаг установки не более 0,01 с при квадратическом отклонении того же порядка). Одним из возможных путей повышения точности является исключение ошибки начальной скорости снаряда. С этой целью после вылета снаряда производится бесконтактным способом измерение его скорости, полученное конкретное значение вводится в расчет временной установки, а затем последняя подается с помощью кодированного лазерного луча со скорость 20…40 кбит/с через канал трубки стабилизатора в оптическое окно донного взрывателя. При стрельбе по целям, четко отделяющимся от окружающей среды, вместо дистанционного взрывателя может быть использован неконтактный взрыватель типа «Дальномер».

Предложена конструкция осколочно-пучкового снаряда с осевым расположением цилиндрического блока ГПЭ внутри заряда ВВ. Перспективной является конструкция снаряда, создающего пучок ГПЭ с овальным поперечным сечением, стелющийся вдоль поверхности земли. В патентах №№ 2082943, 2095739 предложены конструкции осколочно-кинетических снарядов соответственно с передним и задним расположением блока ГПЭ, ударной трубкой и зарядом детонационно-способного твердого топлива двойного назначения. В зависимости от условий применения этот заряд используется в качестве разрывного (как ВВ) или в качестве ускорительного (как твердое ракетное топливо). Второй основной идеей разработки является разрушение корпуса на осколки ударом по его внутренней поверхности трубки, разгоняемой взрывом. Такая схема обеспечивает так называемое разрушение без метания, т. е. разрушение корпуса без сообщения его осколкам заметной радиальной скорости, что позволяет включить их в осевой поток. Реализация полноценного дробления при ударе трубкой была подтверждена экспериментально. (Рис.14, 15 )

Значительный интерес представляют «гибридные» конструкции снарядов, в которых используются как пороховые, так и бризантные заряды. Примерами могут служить шрапнельный снаряд с дроблением корпуса после выброса блока стреловидных ПЭ (Патент №2079099 РФ, НИИ СМ), шведский снаряд «Р» с пороховым выбросом метательных блоков, содержащих заряд ВВ, адаптивный снаряд с выбрасываемым цилиндрическим слоем ГПЭ и «поршнем», содержащем заряд ВВ (заявка №98117004, НИИ СМ). (Рис.16, 17 )

Разработка осколочно-пучковых снарядов к малокалиберным автоматическим пушкам (МКАП) сдерживается ограничениями, накладываемыми величиной калибра. В настоящее время практически монопольным калибром отечественных МКАП Сухопутных войск, ВВС и ВМФ является калибр 30 мм. 23-мм МКАП еще сохраняются на вооружении (самоходная установка «Шилка», шестиствольная авиационная пушка ГШ-6-23 и др.), но большинство специалистов считает, что они уже не удовлетворяют современным требованиям по эффективности. Использование одного калибра во всех видах Вооруженных сил и унификация боеприпасов является несомненным преимуществом. В то же время жесткая фиксация калибра уже в настоящее время начнет ограничивать боевые возможности МКАП, в особенности, при борьбе с ПКР. В частности, проработки показывают, что реализация эффективного осколочно-пучкового снаряда в этом калибре очень затруднена. В то же время расчеты по критерию максимума вероятности поражения цели очередью при фиксированных числе очередей и массе системы оружия, включающей огневую установку и боекомплект, показывают, что калибр 30 мм не оптимален, а оптимум находится в диапазоне 35-45 мм. Для разработки новых МКАП предпочтительным является калибр 40 мм, являющийся членом ряда нормальных линейных размеров Ra10, обеспечивающий возможность межвидовой унификации (ВМС, ВВС, Сухопутные войска), мировой стандартизации и расширения экспорта с учетом широкого распространения 40-мм МКАП за рубежом (буксируемый ЗАК L70 «Бофорс», боевая машина пехоты CV-90 , корабельные ЗАК «Тринити», «Фаст Форти», «Дардо» и др.). Все перечисленные 40-мм системы кроме «Дардо» и «Фаст Форти» являются одноствольными с низкой скорострельностью 300 выстр./мин. Двуствольные системы «Дардо» и «Фаст Форти» имеют общую скорострельность соответственно 600 и 900 выстр./мин. Фирмой «Эллайент Тексистемз» (США) разработана 40-мм пушка CTWS с телескопическим выстрелом и поперечной схемой заряжания. Пушка имеет скорострельность 200 выстр./мин.

Из вышеизложенного ясно, что в ближайшие годы следует ожидать появления оружия нового поколения 40-мм пушек с вращающимся блоком стволов, способных разрешить рассмотренные выше противоречие.

Одно из распространенных возражений против введения в систему вооружений калибра 40 мм основано на трудностях использования 40-мм пушек на летательных аппаратах из-за больших усилий отдачи (так называемой динамической несовместимости), что исключает возможность распространения межвидовой унификации на вооружение ВВС и тактической авиации Сухопутных войск.

В данном случае следует отметить, что 40-мм МКАП будут предназначены в первую очередь для использования в корабельных системах ПВО, где ограничения по суммарной массе системы оружия не является чрезмерно жесткими. Очевидно, что целесообразно сочетание в системе ПВО корабля пушек обоих калибров (30 и 40 мм) с оптимальным разделением между ними диапазонов дальностей перехвата ПКР. Во вторых, указанное возражение опровергается историческим опытом. МКАП крупных калибров успешно применялись в авиации в период второй мировой войны и после нее. К ним относятся отечественные авиационные пушки Нудельмана-Суранова НС-37, НС-45 и 37-мм американская пушка М-4 истребителя Р-39 «Аэрокобра». 37-мм пушка НС-37 (масса снаряда 735 г, начальная скорость 900 м/с, скорострельность 250 выстр./мин) устанавливалась на истребителе ЯК-9Т (боекомплект 30 патронов) и на штурмовиках ИЛ-2 (две пушки с боекомплектом 50 патронов каждая). На заключительном периоде Великой Отечественной войны успешно применялись истребители ЯК-9К с 45-мм пушкой НС-45 (масса снаряда 1065 г, начальная скорость 850 м/с, скорострельность 250 выстр./мин). В послевоенный период пушки НС-37, НС-37Д устанавливались на реактивных истребителях.

Переход на калибр 40 мм открывает возможности разработки не только осколочно-пучковых снарядов, но и других перспективных снарядов, в том числе корректируемых, кумулятивных, с программируемым неконтактным взрывателем, с кольцевым поражающим элементом и др.

Весьма перспективную сферу применения принципа взрывного осевого метания ГПЭ образуют надкалиберные гранаты подствольных, ручных и ружейных гранатометов. Надкалиберная осколочно-пучковая граната к подствольному гранатомету (патент №2118788 РФ, НИИ СМ) предназначена в основном для настильной стрельбы на небольшие дистанции (до 100 м) при самообороне. Граната содержит калиберную часть с вышибным зарядом и выступами, входящими в нарезы гранатного ствола, и надкалиберную часть, содержащую дистанционный взрыватель, заряд ВВ и слой ГПЭ. Величина диаметра надкалиберной части зависит от расстояния между осями пулевого и гранатного ствола.

Общая масса перспективной пучковой гранаты к 40-мм подствольному гранатомету ГП-25 составляет 270 г, начальная скорость гранаты – 72 м/с, диаметр надкалиберной части – 60 мм, масса заряда ВВ (флегматизированный гексоген A-IX-1) – 60 г, готовые поражающие элементы в форме кубика с ребром 2,5 мм массой 0,25 г выполнены из вольфрамового сплава с плотностью 16 г/куб.см; укладка ГПЭ однослойная, количество ГПЭ – 400 шт., скорость метания – 1200 м/с, убойный интервал – 40 м от точки разрыва, шаг установки взрывателя – 0,1 с (Рис.18 ).

В настоящей статье вопросы развития осколочных боеприпасов осевого действия рассмотрены в основном применительно к ствольным снарядам, в той или иной степени являющихся развитием классической шрапнели. В широком же аспекте принцип поражения целей направленными потоками ГПЭ используются в самых разнообразных видах оружия (боевые части ЗУР и НАР, инженерные направленные осколочные мины, осколочные боеприпасы направленного действия активной защиты танков, ствольное картечное оружие и т. п.).



Поделиться: