Что такое высказывание? Темы, цели и виды высказываний. Знаменитые высказывания

Тема 2. Высказывания. Логические операции над ними

Простое высказывание – это утверждение (повествовательное предложение), в отношении которого можно сказать, истинно оно или ложно (но не то и другое вместе).

Всякое высказывание является предложением и может быть выражено словами, однако далеко не каждое предложение является высказыванием в математическом смысле.

Пример. Не являются высказываниями предложения:

1) число 0,00000001 очень мало;

2) существует ли число, квадрат которого равен 2?

4) .

Первое их этих предложений не является высказыванием потому, что не имеет точного смысла и мы не можем сказать, истинно оно или ложно; второе предложение содержит вопрос; третье и четвертое предложения содержат букву х. При одних значениях х получается истинное высказывание, при других ложное.

Предложение, о котором невозможно однозначно решить вопрос, истинно оно или ложно, высказыванием не является.

Всякое высказывание является либо истинным, либо ложным (закон исключенного третьего).

Никакое высказывание не может быть одновременно истинным и ложным (закон противоречия).

Неопределенные высказывания

Будем обозначать через N множество всех натуральных чисел. Через х обозначим произвольный элемент множества N. Рассмотрим следующие предложения:

,

.

Предложения A(x), B(x), C(x), D(x) высказываниями не являются, т.к. об истинности, например, A(x) мы ничего не можем сказать, пока нам не известно число х. Однако, подставляя в A(x) вместо х различные натуральные числа, мы будем получать высказывания о натуральных числах – иногда истинные, иногда ложные. Например:

Истинное высказывание;

Ложное высказывание.

Предложения A(x), B(x), C(x), D(x), содержащие переменную х , называют неопределенными высказываниями (предикатами). Если вместо х подставить число, то мы получим обычное высказывание.

Неопределенное высказывание может быть задано на любом множестве. Оно представляет собой высказывание о каком-то элементе х рассматриваемого множества.

Часто приходится рассматривать неопределенные высказывания, в которые входит не одно, а два или большее число переменных.

Пример. ;

Мы ничего не можем сказать об истинности или ложности этих утверждений, т.к. нам неизвестны х и y. Но если точно указано, чему равны х и y , каждое из сформулированных утверждений превращается в высказывание – для одних пар х и y истинное, для других – ложное. Вот примеры высказываний, полученных из указанных предложений при конкретных значениях х и y:

- истинное высказывание;

- ложное высказывание;

- ложное высказывание;

- ложное высказывание;

- истинное высказывание.

Логические операции над высказываниями

Высказывания обозначают латинскими буквами A, B, C , …, их значения истина и ложь соответственно, через «И» и «Л». Сложные высказывания получают из простых при помощи логических операций, к которым относятся отрицание, конъюнкция, дизъюнкция, импликация, эквивалентность (эквиваленция ) .

1. Если А – высказывание, то отрицание высказывания А определяется как такое высказывание, которое истинно тогда и только тогда, когда высказывание А ложно. Отрицание высказывания А обозначается (или ØА ) и читается «не А» .

Истинность-ложность операции отрицания выражает истинностная таблица 1.1.

Т а б л и ц а 1.1

А
И Л
Л И

Пример. 1) ; .

2) ; .

3) ; .

4) ; .

Каково бы ни было высказывание А, из двух высказываний А, А одно является истинным, а другое – ложным.

Закон отрицания отрицания: Двойное отрицание А истинно в том и только в том случае, если истинно само высказывание А (т.е. если А истинно, то и А истинно, а если А ложно, то и А ложно).

2. Конъюнкцией двух высказываний называется такое высказывание, которое истинно тогда и только тогда, когда оба составляющие ее высказывания истинны.

Если А , В - высказывания, то их конъюнкция обозначается A Ù B (или А & B ) и читается «А и В ».

Конъюнкции соответствует истинностная таблица 1.2.

Т а б л и ц а 1.2

А В А Ù В
И И И
И Л Л
Л И Л
Л Л Л

Пример: Высказывание - истинно, высказывание - истинно, поэтому истинна и их конъюнкция .

3. Дизъюнкцией двух высказываний называется такое высказывание, которое ложно тогда и только тогда, когда оба составляющие ее высказывания ложны.

Если А , В - два высказывания, то их дизъюнкция обозначается А Ú В и читается «А или В ». Союз «или» здесь употребляется в соединительном, а не в разделительном смысле, т. е. для истинности высказывания А Ú В допускается также случай истинности обоих высказываний А , В .

Операции дизъюнкции соответствует истинностная таблица 1.3.

Т а б л и ц а 1.3

А В А Ú В
И И И
Л И И
И Л И
Л Л Л

Пример: Высказывание - истинно, высказывание - ложно. Тогда высказывание - истинно.

4. Импликация высказываний А, В определяется как такое высказывание, которое ложно тогда и только тогда, когда высказывание А истинно, а высказывание В ложно. Импликация двух высказываний А , В обозначается А Þ В и читается «если А , то В ». Высказывание А называется посылкой импликации , а В - заключением .

Импликации соответствует истинностная таблица 1.4.

Т а б л и ц а 1.4

А В А Þ В
И И И
Л И И
И Л Л
Л Л И

5. Эквивалентность двух высказываний А , В определяется как высказывание, которое истинно тогда и только тогда, когда высказывания А , В оба истинны или оба ложны. Обозначается А Û В и читается «А тогда и только тогда, когда В » («если А , то В , и, если В , то А », «А есть необходимое и достаточное условие для В »). Значения эквивалентности определены в истинностной таблице 1.5.

Т а б л и ц а 1.5

А В А Û В
И И И
И Л Л
Л И Л
Л Л И

Пример: Рассмотрим два высказывания, определенных на множестве натуральных чисел:

Тогда признак делимости на 3 можно записать как (число делится на 3 тогда и только тогда, когда сумма его цифр делится на три).

Если теорема сформулирована в виде A Þ B , то она называется признаком или достаточным условием дляB , где A, B – некоторые высказывания.

Теорема типа В Þ А называется обратной для теоремы A Þ B .

Если теорема имеет вид A Û B , то она называется критерием или необходимым и достаточным условиями для B .

Теорема такого типа объединяет прямую и обратную теоремы.

Теорема типа называется противоположной к обратной теореме .

Высказывание A Þ B истинно тогда и только тогда, когда истинно высказывание . На этом факте основан метод доказательства от противного .

Пример: Пусть высказывание , а . Тогда .

Данную теорему принято выражать в следующем виде:

А является достаточным условием для В.

В является необходимым условием для А.

Необходимое условие можно сформулировать следующим образом: для делимости числа х на 4 необходимо, чтобы его последняя цифра была четной.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-10-25

Тема: Логические высказывания и логические операции.

Цели урока:

Сформировать понятия: логическое высказывание, логические величины, логические операции.

Учащиеся должны знать: значение понятий: логическое высказывание, логические величины, логические операции.

Учащиеся должны уметь:

  • приводить примеры логических высказываний;
  • называть логические величины, логические операции.

Ход урока

Занятие сопровождается компьютерной презентацией. (Приложение)

I. Оргмомент

На прошлом уроке мы с вами говорили о науке Логике. Мы уже знаем, что в науке логика есть несколько разделов. Один из разделов - Алгебра высказываний.

Запишем заголовок: Алгебра высказываний.

II. Объяснение нового материала

(Слайд 1)

ВЫСКАЗЫВАНИЕ - это повествовательное предложение, о котором можно сказать, что оно или истинно или ложно.

Например:

Земля - планета Солнечной системы. (Истинно.)

2 + 8 < 5 (Ложно.)

5 · 5 = 25 (Истинно.)

Всякий квадрат есть параллелограмм. (Истинно.)

Каждый параллелограмм есть квадрат. (Ложно.)

2 · 2 = 5 (Ложно.)

Не всякое предложение является высказыванием.

1) Восклицательные и вопросительные предложения высказываниями не являются.

- «Какого цвета этот дом?»

- «Пейте томатный сок!»

2) Не являются высказываниями и определения.

«Назовем медианой отрезок, соединяющий вершину треугольника с серединой противоположной стороны».

Определения не бывают истинными или ложными, они лишь фиксируют принятое использование терминов.

3) Не являются высказываниями и предложения типа «Он сероглаз» или «х- 4х + 3=0» - в них не указано, о каком человеке идет речь или для какого числа х верно равенство. Такие предложения называются высказывательными формами.

Высказывательная форма - это повествовательное предложение, которое прямо или косвенно содержит хотя бы одну переменную и становится высказыванием, когда все переменные замещаются своими значениями.

(Слайд 2)

В математической логике не рассматривается конкретное содержание высказывания, важно только, истинно оно или ложно. Поэтому высказывание можно представить некоторой переменной величиной, значением которой может быть только 0 или 1 . Если высказывание истинно, то его значение равно 1, если ложно - 0.

Простые высказывания назвали логическими переменными и для простоты записи их обозначают латинскими буквами: А, В, С…

Луна является спутником Земли. А = 1

Москва – столица Германии. В = 0

Сложные высказывания называются логическими функциями . Значения логической функции также может принимать значения только 0 или 1.

Запишем заголовок:

БАЗОВЫЕ ЛОГИЧЕСКИЕ ОПЕРАЦИИ

(Слайд 3)

В алгебре высказываний, как и в обычной алгебре, вводится ряд операций. Логические связки И, ИЛИ и НЕ заменяются логическими операциями: конъюнкцией, дизъюнкцией и инверсией . Это основные логические операции, при помощи которых можно записать любую логическую функцию.

(Слайд 4)

КОГДА ИЗ ТРУБЫ ПОЛЬЕТСЯ ВОДА?

(Слайд 5)

ЛОГИЧЕСКОЕ УМНОЖЕНИЕ

Обозначим каждое из высказываний латинскими буквами.

А – «Сегодня светит солнце».

В – «Сегодня идет дождь».

Соединим с помощью союза И , получим сложное высказывание. Это и будет логическое умножение.

Запишем определение: Логическое умножение (конъюнкция) образуется соединением двух (или более) высказываний в одно с помощью союза «и».
Составим таблицу истинности. (Слайд 6)

Обозначение: &, ^, *.

Союз в естественном языке: и.

Зададим в таблице все варианты, когда высказывания могут быть либо истинными – 1, либо ложными – 0. Теперь посмотрим, что получим в итоге?

Рассмотрим другой вариант: КОГДА ИЗ ТРУБЫ ПОЛЬЕТСЯ ВОДА?

(Слайд 7)

(Слайд 8) ЛОГИЧЕСКОЕ СЛОЖЕНИЕ

А – На стоянке находится «Мерседес».

В – На стоянке находится «Жигули».

Соединим с помощью союза ИЛИ , получим сложное высказывание. Это и будет логическое сложение.

Запишем определение: Логическое сложение (дизъюнкция) образуется соединением двух (или более) высказываний в одно с помощью союза «или».

Составим таблицу истинности. (Слайд 9)

Обозначение: +, V.

Союз в естественном языке: или.

(Слайд 10)

Посмотрите, как проще запомнить дизъюнкцию и конъюнкцию.

В слове дизъюнкция две буквы И, значит ИЛИ, а в слове конъюнкция одна буква И, значит И.

Следующая операция: ЛОГИЧЕСКОЕ ОТРИЦАНИЕ. (Слайд 11)

Снова обозначим каждое из высказываний латинскими буквами.

Запишем определение: Логическое отрицание (инверсия) образуется из высказывания с помощью добавления частицы «не» к сказуемому или использования оборота речи «неверно, что…».

Составим таблицу истинности. (Слайд 12)

Обозначение: ¬.

Союз в естественном языке: не; неверно, что…

Следующая операция: ЛОГИЧЕСКОЕ СЛЕДОВАНИЕ. (Слайд 13)

Обозначение: →.

Союз в естественном языке: если…, то….

Запишем определение: Логическое следование (импликация) образуется соединением двух высказываний в одно с помощью оборота речи «если…, то…».

Составим таблицу истинности. (Слайд 14)

III. Итог урока

Сегодня мы с вами рассмотрели логические высказывания и логические операции. У кого есть вопросы по данной теме?

Алгебра в широком смысле этого слова - наука об общих операциях, аналогичных сложению и умножению, которые могут выполняться над разнообразными математическими объектами.

Многие математические объекты (целые и рациональные числа, многочлены, векторы, множества) вы изучаете в школьном курсе алгебры, где знакомитесь с такими разделами математики, как алгебра чисел, алгебра многочленов, алгебра множеств и т. д. Для информатики важен раздел математики, называемый алгеброй логики ; объектами алгебры логики являются высказывания .

Высказывание - это предложение на любом языке, содержание которого можно однозначно определить как истинное или ложное.

Пример:

Например, относительно предложений «Великий русский учёный М. В. Ломоносов родился в \(1711\) году» и «Two plus six is eight» можно однозначно сказать, что они истинны. Предложение «Зимой воробьи впадают в спячку» - ложно. Следовательно, эти предложения являются высказываниями.

В русском языке высказывания выражаются повествовательными предложениями.

Обрати внимание!

Но не всякое повествовательное предложение является высказыванием.

Пример:

Например, предложение «Это предложение является ложным» не является высказыванием, так как относительно него нельзя сказать, истинно оно или ложно, без того чтобы не получить противоречие. Действительно, если принять, что предложение истинно, то это противоречит сказанному. Если же принять, что предложение ложно, то отсюда следует, что оно истинно.

Побудительные и вопросительные предложения высказываниями не являются.

Например, не являются высказываниями такие предложения, как: «Запишите домашнее задание», «Как пройти в библиотеку?», «Кто к нам пришёл?».

Высказывания могут строиться с использованием знаков различных формальных языков - математики, физики, химии и т. п.

Примерами высказываний могут служить:

«Nа - металл» (истинное высказывание);

«Второй закон Ньютона выражается формулой \(F = ma\) (истинное высказывание);

«Периметр прямоугольника с длинами сторон \(а\) и \(b\) равен \(аb\)» (ложное высказывание).

Не являются высказываниями числовые выражения, но из двух числовых выражений можно составить высказывание, соединив их знаками равенства или неравенства. Например:

  • 3 + 5 = 2 ⋅ 4 (истинное высказывание);
  • «II + VI > VIII» (ложное высказывание).

Не являются высказываниями и равенства или неравенства, содержащие переменные.

Например, предложение \(«x < 12»\) становится высказыванием только при замене переменной каким-либо конкретным значением: \(«5 < 12»\) - истинное высказывание; \(«12 < 12»\) - ложное высказывание.

Обоснование истинности или ложности высказываний решается теми науками, к сфере которых они относятся. Алгебра логики отвлекается от смысловой содержательности высказываний. Её интересует только то, истинно или ложно данное высказывание. В алгебре логики высказывания обозначают буквами и называют логическими переменными . При этом, если высказывание истинно, то значение соответствующей ему логической переменной обозначают единицей \((А = 1)\), а если ложно - нулём \((В = 0)\).

\(0\) и \(1\), обозначающие значения логических переменных, называются логическими значениями .

Виды высказываний

Логические высказывания принято подразделять на два вида: элементарные логические высказывания и составные логические высказывания.

Составное логическое высказывание - это высказывание, образованное из других высказываний с помощью логических связок.

Логическая связка - это любая логическая операция над высказыванием. Например, употребляемые в обычной речи слова и словосочетания «не», «и», «или», «если… , то», «тогда и только тогда» являются логическими связками.

Элементарные логические высказывания - это высказывания не относящиеся к составным.

Примеры: «Петров - врач», «Петров - шахматист» - элементарные логические высказывания. «Петров - врач и шахматист» - составное логическое высказывание, состоящие из двух элементарных высказываний, связанных между собой при помощи связки «и».

Связь с математической логикой

Обычная логика двухзначна, то есть приписывает высказываниям только два возможных значения: истинно оно или ложно .

Пусть - высказывание. Если оно истинно, то пишут , если ложно, то .

Основные операции над логическими высказываниями

Отрицание логического высказывания - логическое высказывание, принимающее значение «истинно», если исходное высказывание ложно, и наоборот.

Конъюнкция двух логических высказываний - логическое высказывание, истинное только тогда, когда они одновременно истинны.

Дизъюнкция двух логических высказываний - логическое высказывание, истинное только тогда, когда хотя бы одно из них истинно.

Импликация двух логических высказываний A и B - логическое высказывание, ложное только тогда, когда B ложно, а A истинно.

Равносильность (эквивалентность) двух логических высказываний - логическое высказывание, истинное только тогда, когда они одновременно истинны или ложны.

Кванторное всеобщности () - логическое высказывание, истинное только тогда, когда для каждого объекта x из заданной совокупности высказывание A(x) истинно.

Кванторное логическое высказывание с квантором существования () - логическое высказывание, истинное только тогда, когда в заданной совокупности существует объект x, такой, что высказывание A(x) истинно.

См. также

  • Утверждение

Примечания

Литература

  • Карпенко, А. С. Современные исследования в философской логике // Логические исследования. Вып. 10. - М.: Наука, 2003. ISBN 5-02-006257-X - С. 61-93.
  • Крипке, С. А. Витгенштейн о правилах и индивидуальном языке / Пер. В. А. Ладова, В. А. Суровцева. Под общ. ред. В. А. Суровцева. - Томск: Изд-во Том. ун-та, 2005. - 152 с. - (Библиотека аналитической философии). ISBN 5-7511-1906-1
  • Курбатов, В. И. Логика. Систематический курс. - Ростов н/Д: Феникс, 2001. - 512 c. ISBN 5-222-01850-4
  • Шуман, А. Н. Современная логика: теория и практика. - Минск: Экономпресс, 2004. - 416 с. ISBN 985-6479-35-5
  • Макарова, Н. В. Информатика и ИКТ. - Санкт-Петербург: Питер Пресс, 2007 ISBN 978-5-91180-198-4 - С. 343-345.
  • Кондаков Н. И. Логический словарь / Горский Д. П.. - М .: Наука, 1971. - 656 с.

Wikimedia Foundation . 2010 .

Смотреть что такое "Высказывание (логика)" в других словарях:

    Высказывание: Высказывание (логика) предложение, которое может быть истинно или ложно. Высказывание (лингвистика) предложение в конкретной речевой ситуации. См. также Суждение … Википедия

    - (от греч. logos слово, понятие, рассуждение, разум), или Формальная логика, наука о законах и операциях правильного мышления. Согласно основному принципу Л., правильность рассуждения (вывода) определяется только его логической формой, или… … Философская энциклопедия

    Раздел логики, в котором изучаются истинностные взаимосвязи между высказываниями. В рамках данного раздела высказывания (пропозиции, предложения) рассматриваются только с т.зр. их истинности или ложности, безотносительно к их внутренней субъектно … Философская энциклопедия

    логика высказываний - ЛОГИКА ВЫСКАЗЫВАНИЙ, пропозициональная логика раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, простые высказывания при этом выступают как… … Энциклопедия эпистемологии и философии науки

    Грамматически правильное повествовательное предложение, взятое вместе с выражаемым им смыслом. В логике употребляется несколько понятий В., существенно различающихся между собой. Прежде всего это понятие дескриптивного, или о п и с а тельного,… … Философская энциклопедия

    Логика Бэрроуза Абади Нидхэма (англ. Burrows Abadi Needham logic) или BAN логика (англ. BAN logic) это формальная логическая модель для анализа знания и доверия, широко используемая при анализе протоколов… … Википедия

    Центральный раздел логики, в котором изучается субъектно предикатная структура высказывании и истинностные взаимосвязи между ними. Л.п. представляет собой содержательное расширение логики высказываний. В рамках данного раздела любое высказывание… … Философская энциклопедия

    Или Логика науки, применение идей, методов и аппарата логики в анализе научного познания. Развитие логики всегда было тесно связано с практикой теоретического мышления и прежде всего с развитием науки. Конкретные рассуждения дают логике материал … Философская энциклопедия

Логика высказываний , называемая также пропозициональной логикой - раздел математики и логики, изучающий логические формы сложных высказываний, построенных из простых или элементарных высказываний с помощью логических операций.

Логика высказываний отвлекается от содержательной нагрузки высказываний и изучает их истинностное значение, то есть является ли высказывание истинным или ложным.

Рисунок сверху - иллюстрация явления, известного как "Парадокс лжеца". При этом, на взгляд автора проекта, такие парадоксы возможны только в средах, несвободных от политических заморочек, где на ком-то могут априори поставить клеймо лжеца. В естественном многослойном мире на предмет "истины" или "лжи" оцениваются только отдельно взятые высказывания . И далее на этом уроке вам представится возможность самим оценить на этот предмет немало высказываний (а затем посмотреть правильные ответы). В том числе сложных высказываний, в которых более простые связаны между собой знаками логических операций. Но прежде рассмотрим сами эти операции над высказываниями.

Логика высказываний применяется в информатике и программировании в виде объявления логических переменных и присвоения им логических значений "ложь" или "истина", от которых зависит ход дальнейшего исполнения программы. В небольших программах, где задействована лишь одна логическая переменная, этой логической переменной часто даётся имя, например, "флаг" ("flag") и подразумевается, что "флаг поднят", когда значение этой переменной - "истина" и "флаг опущен", когда значение этой переменной - "ложь". В программах большого объёма, в которых несколько или даже очень много логических переменных, от профессионалов требуется придумывать имена логических переменных, имеющих форму высказываний и смысловую нагрузку, отличающую их от других логических переменных и понятных другим профессионалам, которые будут читать текст этой программы.

Так, может быть объявлена логическая переменная с именем "ПользовательЗарегистрирован" (или его англоязычный аналог), имеющая форму высказывания, которой может быть присвоено логическое значение "истина" при выполнении условий, что данные для регистрации отправлены пользователем и эти данные программой признаны годными. В дальнейших вычислениях значения переменных могут меняться в зависимости от того, какое логическое значение ("истина" или "ложь") имеет переменная "ПользовательЗарегистрирован". В других случах переменной, например, с именем "ДоДняХОсталосьБолееТрёхДней", может быть присвоено значение "Истина" до некоторого блока вычислений, а в ходе дальнейшего исполнения программы это значение может сохраняться или меняться на "ложь" и от значения этой переменной зависит ход дальнейшего исполнения программы.

Если в программе используются несколько логических переменных, имена которых имеют форму высказываний, и из них строятся более сложные высказывания, то намного проще разрабатывать программу, если перед её разработкой записать все операции с высказываний в виде формул, применяемых в логике высказываний, чем мы в ходе этого урока и займёмся.

Логические операции над высказываниями

Для математических высказываний всегда можно сделать выбор между двумя различными альтернативами "истина" и "ложь", а для высказываний, сделанных на "словесном" языке, понятия "истинности" и "ложности" несколько более расплывчаты. Однако, например, такие словесные формы, как "Иди домой" и "Идёт ли дождь?", не являются высказываниями. Поэтому понятно, что высказываниями являются такие словесные формы, в которых что-либо утверждается . Не являются высказываниями вопросительные или восклицательные предложения, обращения, а также пожелания или требования. Их невозможно оценить значениями "истина" и "ложь".

Высказывания же, напротив, можно рассмотривать как величину, которая может принимать два значения: "истина" и "ложь".

Например, даны суждения: "собака - животное", "Париж - столица Италии", "3

Первое из этих высказываний может быть оценено символом "истина", второе - "ложь", третье - "истина" и четвёртое - "ложь". Такая трактовка высказываний составляет предмет алгебры высказываний. Будем обозначать высказывания большими латинскими буквами A , B , ..., а их значения, то есть истину и ложь, соответственно И и Л . В обычной речи употребляются связи между высказываниями "и", "или" и другие.

Эти связи позволяют, соединяя между собой различные высказывания, образовывать новые высказывания - сложные высказывания . Например, связка "и". Пусть даны высказывания: "π больше 3" и высказывание "π меньше 4". Можно организовывать новое - сложное высказывание "π больше 3 и π меньше 4". Высказывание "если π иррационально, то π ² тоже иррационально" получается связыванием двух высказываний связкой "если - то". Наконец, мы можем получить из какого-либо высказывания новое - сложное высказывание - отрицая первоначальное высказывание.

Рассматривая высказывания как величины, принимающие значения И и Л , мы определим далее логические операции над высказываниями , которые позволяют из данных высказываний получать новые - сложные высказывания.

Пусть даны два произвольных высказывания A и B .

1 . Первая логическая операция над этими высказываниями - конъюнкция - представляет собой образование нового высказывания, которое будем обозначать A B и которое истинно тогда и только тогда, когда A и B истинны. В обычной речи этой операции соответствует соединение высказываний связкой "и".

Таблица истинности для конъюнкции:

A B A B
И И И
И Л Л
Л И Л
Л Л Л

2 . Вторая логическая операция над высказываниями A и B - дизъюнкция, выражаемая в виде A B , определяется следующим образом: оно истинно тогда и только тогда, когда хотя бы одно из первоначальных высказываний истинно. В обычной речи эта операция соответствует соединению высказываний связкой "или". Однако здесь мы имеем не разделительное "или", которое понимается в смысле "либо-либо", когда A и B не могут быть оба истинны. В определении логики высказываний A B истинно и при истинности лишь одного из высказываний, и при истинности обоих высказываний A и B .

Таблица истинности для дизъюнкции:

A B A B
И И И
И Л И
Л И И
Л Л Л

3 . Третья логическая операция над высказываниями A и B , выражаемая в виде A B ; полученное таким образом высказывание ложно тогда и только тогда, когда A истинно, а B ложно. A называется посылкой , B - следствием , а высказывание A B - следованием , называемая также импликацией. В обычной речи эта операция соответствует связке "если - то": "если A , то B ". Но в определении логики высказываний это высказывание всегда истинно независимо от того, истинно или ложно высказывание B . Это обстоятельство можно кратко сформулировать так: "из ложного следует всё, что угодно". В свою очередь, если A истинно, а B ложно, то всё высказывание A B ложно. Оно будет истинным тогда и только тогда, когда и A , и B истинны. Кратко это можно сформулировать так: "из истинного не может следовать ложное".

Таблица истинности для следования (импликации):

A B A B
И И И
И Л Л
Л И И
Л Л И

4 . Четвёртая логическая операция над высказываниями, точнее над одним высказыванием, называется отрицанием высказывания A и обозначается ~ A (можно встретить также употребление не символа ~, а символа ¬, а также верхнего надчёркивания над A ). ~ A есть высказывание, которое ложно, когда A истинно, и истинно, когда A ложно.

Таблица истинности для отрицания:

A ~ A
Л И
И Л

5 . И, наконец, пятая логическая операция над высказываниями называется эквивалентностью и обозначается A B . Полученное таким образом высказывание A B есть высказывание истинное тогда и только тогда, когда A и B оба истинны или оба ложны.

Таблица истинности для эквивалентности:

A B A B B A A B
И И И И И
И Л Л И Л
Л И И Л Л
Л Л И И И

В большинстве языков программирования есть специальные символы для обозначения логических значений высказываний, записываются они почти во всех языках как true (истина) и false (ложь).

Подытожим вышесказанное. Логика высказываний изучает связи, которые полностью определяются тем, каким образом одни высказывания строятся из других, называемых элементарными. Элементарные высказывания при этом рассматриваются как целые, не разложимые на части.

Систематизируем в таблице ниже названия, обозначения и смысл логических операций над высказываниями (они нам вскоре вновь понадобятся для решения примеров).

Связка Обозначение Название операции
не отрицание
и конъюнкция
или дизъюнкция
если..., то... импликация
тогда и только тогда эквивалентность

Для логических операций верны законы алгебры логики , которые можно использовать для упрощения логических выражений. При этом следует отметить, что в логике высказываний отвлекаются от смыслового содержания высказывания и ограничиваются рассмотрением его с той позиции, что оно либо истинно, либо ложно.

Пример 1.

1) (2 = 2) И (7 = 7) ;

2) Не(15 ;

3) ("Сосна" = "Дуб") ИЛИ ("Вишня" = "Клён") ;

4) Не("Сосна" = "Дуб") ;

5) (Не(15 20) ;

6) ("Глаза даны, чтобы видеть") И ("Под третьим этажом находится второй этаж") ;

7) (6/2 = 3) ИЛИ (7*5 = 20) .

1) Значение высказывания в первых скобках равно "истина", значение выражения во вторых скобках - также истина. Оба высказывания соединены логической операцией "И" (смотрим правила для этой операции выше), поэтому логическое значение всего данного высказывания - "истина".

2) Значение высказывания в скобках - "ложь". Перед этим зтим высказыванием стоит логическая операция отрицания, поэтому логическое значение всего данного высказывания - "истина".

3) Значение высказывания в первых скобках - "ложь", значение высказывания во вторых скобках - также "ложь". Высказывания соединены логической операцией "ИЛИ" и ни одно из высказываний не имеет значения "истина". Поэтому логическое значение всего данного высказывания - "ложь".

4) Значение высказывания в скобках - "ложь". Перед этим высказыванием стоит логическая операция отрицания. Поэтому логическое значение всего данного высказывания - "истина".

5) В первых скобках отрицается высказывание во внутренних скобках. Это высказывание во внутренних скобках имеет значение "ложь", следовательно, его отрицание будет иметь логическое значение "истина". Высказывание во вторых скобках имеет значение "ложь". Два этих высказывания соединены логической операцией "И", то есть получается "истина И ложь". Следовательно, логическое значение всего данного высказывания - "ложь".

6) Значение высказывания в первых скобках - "истина", значение высказывания во вторых скобках - также "истина". Два этих высказывания соединены логической операцией "И", то есть получается "истина И истина". Следовательно, логическое значение всего данного высказывания - "истина".

7) Значение высказывания в первых скобках - "истина". Значение высказывания во вторых скобках - "ложь". Два этих высказывания соединены логической операцией "ИЛИ", то есть получается "истина ИЛИ ложь". Следовательно, логическое значение всего данного высказывания - "истина".

Пример 2. Запишите с помощью логических операций следующие сложные высказывания:

1) "Пользователь не зарегистрирован";

2) "Сегодня воскресенье и некоторые сотрудники находятся на работе";

3) "Пользователь зарегистрирован тогда и только тогда, когда отправленные пользователем данные признаны годными".

1) p - одиночное высказывание "Пользователь зарегистрирован", логическая операция: ;

2) p - одиночное высказывание "Сегодня воскресенье", q - "Некоторые сотрудники находятся на работе", логическая операция: ;

3) p - одиночное высказывание "Пользователь зарегистрирован", q - "Отправленные пользователем данные признаны годными", логическая операция: .

Решить примеры на логику высказываний самостоятельно, а затем посмотреть решения

Пример 3. Вычислите логические значения следующих высказываний:

1) ("В минуте 70 секунд") ИЛИ ("Работающие часы показывают время") ;

2) (28 > 7) И (300/5 = 60) ;

3) ("Телевизор - электрический прибор") И ("Стекло - дерево") ;

4) Не((300 > 100) ИЛИ ("Жажду можно утолить водой")) ;

5) (75 < 81) → (88 = 88) .

Пример 4. Запишите с помощью логических операций следующие сложные высказывания и вычислите их логические значения:

1) "Если часы неправильно показывают время, то можно невовремя прийти на занятия";

2) "В зеркале можно увидеть своё отражение и Париж - столица США";

Пример 5. Определите логическое значение выражения

(p q ) ↔ (r s ) ,

p = "278 > 5" ,

q = "Яблоко = Апельсин" ,

p = "0 = 9" ,

s = "Шапка покрывает голову" .

Формулы логики высказываний

Понятие логической формы сложного высказывания уточняется с помощью понятия формулы логики высказываний .

В примерах 1 и 2 мы учились записывать с помощью логических операций сложные высказывания. Вообще-то они называются формулами логики высказываний.

Для обозначения высказываний, как и упомянутом примере, будем продолжать использовать буквы

p , q , r , ..., p 1 , q 1 , r 1 , ...

Эти буквы будут играть роль переменных, принимающих в качестве значений истинностные значения "истина" и "ложь". Эти переменные называются также пропозициональными переменными. Мы будем далее называть их элементарными формулами или атомами .

Для построения формул логики высказываний кроме указанных выше букв используются знаки логических операций

~, ∧, ∨, →, ↔,

а также символы, обеспечивающие возможность однозначного прочтения формул - левая и правая скобки.

Понятие формулы логики высказываний определим следуюшим образом:

1) элементарные формулы (атомы) являются формулами логики высказываний;

2) если A и B - формулы логики высказываний, то ~A , (A B ) , (A B ) , (A B ) , (A B ) тоже являются формулами логики высказываний;

3) только те выражения являются формулами логики высказываний, для которых это следует из 1) и 2).

Определение формулы логики высказываний содержит перечисление правил образования этих формул. Согласно определению, всякая формула логики высказываний либо есть атом, либо образуется из атомов в результате последовательного применения правила 2).

Пример 6. Пусть p - одиночное высказывание (атом) "Все рациональные числа являются действительными", q - "Некоторые действительные числа - рациональные числа", r - "некоторые рациональные числа являются действительными". Переведите в форму словесных высказываний следующие формулы логики высказываний:

6) .

1) "нет действительных чисел, которые являются рациональными";

2) "если не все рациональные числа являются действительными, то нет рациональных чисел, являющихся действительными";

3) "если все рациональные числа являются действительными, то некоторые действительные числа - рациональные числа и некоторые рациональные числа являются действительными";

4) "все действительные числа - рациональные числа и некоторые действительные числа - рациональные числа и некоторые рациональные числа являются действительными числами";

5) "все рациональные числа являются действительными тогда и только тогда, когда не имеет место быть, что не все рациональные числа являются действительными";

6) "не имеет места быть, что не имеет место быть, что не все рациональные числа являются действительными и нет действительных чисел, которые являются рациональными или нет рациональных чисел, которые являются действительными".

Пример 7. Составьте таблицу истинности для формулы логики высказываний , которую в таблице можно обозначить f .

Решение. Составление таблицы истинности начинаем с записи значений ("истина" или "ложь") для одиночных высказываний (атомов) p , q и r . Все возможные значения записываются в восемь строк таблицы. Далее, определяя значения операции импликации, и продвигаясь вправо по таблице, помним, что значение равно "лжи" тогда, когда из "истины" следует "ложь".

p q r f
И И И И И И И И
И И Л И И И Л И
И Л И И Л Л Л Л
И Л Л И Л Л И И
Л И И Л И Л И И
Л И Л Л И Л И Л
Л Л И И И И И И
Л Л Л И И И Л И

Заметим, что никакой атом не имеет вида ~A , (A B ) , (A B ) , (A B ) , (A B ) . Такой вид имеют сложные формулы.

Число скобок в формулах логики высказываний можно уменьшить, если принять, что

1) в сложной формуле будем опускать внешнюю пару скобок;

2) упорядочим знаки логических операций "по старшинству":

↔, →, ∨, ∧, ~ .

В этом списке знак ↔ имеет самую большую область действия, а знак ~ - самую маленькую. Под областью действия знака операции понимаются те части формулы логики высказываний, к которым применяется (на которые действует) рассматриваемое вхождение этого знака. Таким образом, можно опускать во всякой формуле те пары скобок, которые можно восстановить, учитывая "порядок старшинства". А при восстановлении скобок сначала расставляются все скобки, относящиеся ко всем вхождениям знака ~ (при этом мы продвигаемся слева направо), затем ко всем вхождениям знака ∧ и так далее.

Пример 8. Восстановите скобки в формуле логики высказываний B ↔ ~ C D A .

Решение. Скобки восстанавливаются пошагово следующим образом:

B ↔ (~ C ) ∨ D A

B ↔ (~ C ) ∨ (D A )

B ↔ ((~ C ) ∨ (D A ))

(B ↔ ((~ C ) ∨ (D A )))

Не всякая формула логики высказываний может быть записана без скобок. Например, в формулах А → (B C ) и ~ (A B ) дальнейшее исключение скобок невозможно.

Тавтологии и противоречия

Логические тавтологии (или просто тавтологии) - это такие формулы логики высказываний, что если буквы произвольным образом заменить высказываниями (истинными или ложными), то в результате всегда получится истинное высказывание.

Так как истинность или ложность сложных высказываний зависит лишь от значений, а не от содержания высказываний, каждому из которых соответствует определённая буква, то проверку того, является ли данное высказывание тавтологией, можно подставить следующим способом. В исследуемом выражении на место букв подставляются значения 1 и 0 (соответственно "истина" и "ложь") всеми возможными способами и с использованием логических операций вычисляются логические значения выражений. Если все эти значения равны 1, то исследуемое выражение есть тавтология, а если хотя бы одна подстановка даёт 0, то это не тавтология.

Таким образом, формула логики высказываний, которая принимает значение "истина" при любом распределении значений входящих в эту формулу атомов, называется тождественно истинной формулой или тавтологией .

Противоположный смысл имеет логическое противоречие. Если все значения высказываний равны 0, то выражение есть логическое противоречие.

Таким образом, формула логики высказываний, которая принимает значение "ложь" при любом распределении значений входящих в эту формулу атомов, называется тождественно ложной формулой или противоречием .

Кроме тавтологий и логических противоречий существуют такие формулы логики высказываний, которые не являются ни тавтологиями, ни противоречиями.

Пример 9. Составьте таблицу истинности для формулы логики высказываний и определите, является ли она тавтологией, противоречием или ни тем, ни другим.

Решение. Составляем таблицу истинности:

И И И И И
И Л Л Л И
Л И Л И И
Л Л Л Л И

В значениях импликации не встречаем строку, в которой из "истины" следует "ложь". Все значения исходного высказывания равны "истине". Следовательно, данная формула логики высказываний является тавтологией.



Поделиться: