Экваториальная орбита. Орбиты искусственных спутников земли

Земля, как любое космическое тело, обладает собственным гравитационным полем и рядом расположенными орбитами, на которых могут находиться тела и объекты разной величины. Чаще всего под ними подразумеваются Луна и международная космическая станция. Первая ходит по своей собственной орбите, а МКС - по низкой околоземной. Существует несколько орбит, которые между собой отличаются удаленностью от Земли, относительным расположением относительно планеты и направлением вращения.

Орбиты искусственных спутников Земли

На сегодняшний день в ближайшем околоземном космическом пространстве находится множество объектов, которые являются результатами человеческой деятельности. В основном, это искусственные спутники, служащие для обеспечения связи, однако есть и немало космического мусора. Одним из самых известных искусственных спутников Земли является Международная космическая станция.

ИСЗ движутся по трем основным орбитам: экваториальной (геостационарной), полярной и наклонной. Первая полностью лежит в плоскости окружности экватора, вторая строго ей перпендикулярна, а третья располагается между ними.

Геосинхронная орбита

Название этой траектории связано с тем, что тело, движущееся по ней, имеет скорость, равную звездному периоду вращения Земли. Геостационарная орбита - это частный случай геосинхронной орбиты, которая лежит в той же плоскости, что и земной экватор.

При наклонении не равном нулю и нулевом эксцентриситете спутник, при наблюдении с Земли, описывает в течение суток в небе восьмерку.

Первый спутник на геосинхронной орбите - американский Syncom-2, выведенный на нее в 1963 году. Сегодня в некоторых случаях размещение спутников на геосинхронной орбите происходит по причине того, что ракета-носитель не может вывести их на геостационарную.

Геостационарная орбита

Данная траектория имеет такое название по той причине, что, несмотря на постоянное движение, объект, на ней находящийся, остается статичным относительно земной поверхности. Место, в котором находится объект, называется точкой стояния.

Спутники, выведенные на такую орбиту, часто используются для передачи спутникового телевидения, потому что статичность позволяет единожды направить на него антенну и долгое время оставаться на связи.

Высота расположения спутников на геостационарной орбите равна 35 786 километрам. Поскольку все они находятся прямо над экватором, для обозначения позиции называют только меридиан, например, 180.0˚E Интелсат 18 или 172.0˚E Eutelsat 172A.

Приблизительный радиус орбиты равен ~42 164 км, длина - около 265 000 км, а орбитальная скорость - примерно 3, 07 км/с.

Высокая эллиптическая орбита

Высокой эллиптической орбитой называют такую траекторию, высота которой в перигее в несколько раз меньше, чем в апогее. Выведение спутников на такие орбиты имеет ряд важных преимущества. Например, одной такой системы может быть достаточно для обслуживания всей России или, соответственно, группы государств с равной суммарной площадью. Кроме того, системы ВЭО на высоких широтах более функциональные, чем геостационарные спутники. А еще вывод спутника на высокую эллиптическую орбиту обходится приблизительно в 1,8 раза дешевле.

Крупные примеры систем, работающих на ВЭО:

  • Космические обсерватории, запущенные NASA и ESA.
  • Спутниковое радио Sirius XM Radio.
  • Спутниковая связь Меридиан, -З и -ЗК, Молния-1Т.
  • Спутниковая система коррекции GPS.

Низкая околоземная орбита

Это одна из самых низких орбит, которая в зависимости от разных обстоятельств может иметь высоту 160-2000 км и период обращения, соответственно, 88-127 минут. Единственным случаем, когда НОО была преодолена пилотируемыми космическими аппаратами - это программа Апполон с высадкой американских астронавтов на луну.

Большая часть используемых сейчас или использованных когда-либо ранее искусственных земных спутников работали на низкой околоземной орбите. По этой же причине в этой зоне сейчас расположена основная доля космического мусора. Оптимальная орбитальная скорость для спутников, находящихся на НОО, в среднем, равна 7,8 км/с.

Примеры искусственных спутников на НОО:

  • Международная Космическая станция (400 км).
  • Телекоммуникационные спутники самых разных систем и сетей.
  • Разведывательные аппараты и спутники-зонды.

Обилие космического мусора на орбите - главная современная проблема всей космической индустрии. Сегодня ситуация такова, что вероятность столкновения различных объектов на НОО растет. А это, в свою очередь, ведет к разрушению и образованию на орбите еще большего числа фрагментов и деталей. Пессимистичные прогнозы говорят о том, что запущенный Принцип домино может полностью лишить человечество возможности осваивать космос.

Низкая опорная орбита

Низкой опорной принято называть ту орбиту аппарата, которая предусматривает изменение наклона, высоты или другие существенные изменения. Если же у аппарата нет двигателя и он не совершает маневры, его орбиту называют низкой околоземной.

Интересно, что российские и американские баллистики рассчитывают её высоту по разному, потому что первые основываются на эллиптической модели Земли, а вторые - на сферической. Из-за этого есть разница не только в высоте, но и в положении перигея и апогея.

2007 г.

Основная идея

Этот сайт посвящён вопросам наблюдения искуственных спутников Земли (далее ИСЗ ). Со времени начала космической эры (4 октября 1957 г. был запущен первый ИСЗ - "Спутник-1") человечество создало огромное число спутников, которые кружат вокруг Земли по всевозможным орбитам. На сегодняшний момент число подобных рукотворных объектов превышает десятки тысяч. В основном это "космический мусор" - осколки ИСЗ, отработанные ступени ракет и т.д. Лишь небольшая часть из них составляют действующие ИСЗ.
Среди них есть и исследовательские, и метеорологические, и спутники связи и телекоммуникации, и военные ИСЗ. Пространство вокруг Земли "заселено" ими от высот 200-300 км и до 40000 км. Лишь часть из них доступна для наблюдений с использованием недорогой оптики (бинокли, подзорные трубы, любительские телескопы).

Создавая этот сайт, авторы ставили перед собой цель - собрать воедино информацию о методах наблюдения и съёмки ИСЗ, показать, как расчитывать условия их пролёта над определённой местностью, описать практические аспекты вопроса наблюдения и съёмки. На сайте представлен, в основном, авторский материал, полученный в ходе проведения наблюдений участниками секции "Космонавтика" астрономического клуба "hν" при Минском планетарии (Минск, Беларусь).

И всё же, отвечая на основной вопрос - "Зачем?", нужно сказать следующее. Среди всевозможных хобби, которыми увлекается человек, есть астрономия и космонавтика. Тысячи любителей астрономии наблюдают за планетами, туманностями, галактиками, переменными звёздами, метеорами и прочими астрономическими объектами, фотографируют их, проводят свои конференции и "мастер-классы". Зачем? Это просто хобби, одно из многих. Способ уйти от ежедневных проблем. Даже тогда, когда любители выполняют работы, имеющие научную значимость, они остаются любителями, которые делают это для своего удовольствия. Астрономия и космонавтика - очень "технологичные" увлечения, где можно применить свои знания оптики, электроники, физики и пр. естественно-научных дисциплин. А можно и не применять - и просто получать удовольствие от созерцания. Со спутниками дела обстоят похожим образом. Особенно интересно следить за теми ИСЗ, информация о которых не распространяется в открытых источниках - это военные спутники разведки разных стран. В любом случае, наблюдение ИСЗ - это охота. Часто мы можем заранее указать где и когда покажется спутник, но не всегда. А как он себя будет "вести" - предсказать ещё сложнее.

Благодарности:

Описанные методики были созданы на основе наблюдений и исследований, в которых приняли участие члены клуба любителей астрономии "hν" Минского планетария (Беларусь):

  • Бозбей Максим.
  • Дрёмин Геннадий.
  • Кенько Зоя.
  • Мечинский Виталий.

Также большую помощь оказали члены клуба любителей астрономии "hν" Лебедева Татьяна , Повалишев Владимир и Ткаченко Алексей . Отдельная благодарность Александру Лапшину (Россия), profi-s (Украина), Даниилу Шестакову (Россия) и Анатолию Григорьеву (Россия) за помощь в создании п. II §1 "Фотометрия ИСЗ", Главы 2 и Главы 5, а Елене (Tau , Россия) также за консультации и написание нескольких расчётных программ. Авторы также благодарят Абгаряна Михаила (Беларусь), Горячко Юрия (Беларусь), Григорьева Анатолия (Россия), Еленина Леонида (Россия), Жука Виктора (Беларусь), Молотова Игоря (Россия), Морозова Константина (Беларусь), Плаксу Сергея (Украина), Прокопюка Ивана (Беларусь) за предоставленные иллюстрации для некоторых разделов сайта.

Часть материалов получена в ходе выполнения заказа УП "Геоинформационные системы" Национальной академии наук Беларуси. Представление материалов выполняется на некоммерческой основе в целях популяризации Белорусской космической программы среди детей и молодежи.

Виталий Мечинский, Куратор секции "Космонавтика" астроклуба "hν".

Новости сайта:

  • 01.09.2013: Значительно Обновлён подпункт 2 "Фотометрия ИСЗ за пролёт" п. II §1 -- добавлена информация по двум методикам фотометрии треков ИСЗ (метод фотометрического профиля трека и метод изофотной фотометрии).
  • 01.09.2013: Обновлён подпункт п. II §1 -- добавлена информация по работе с рограммой "Highecl" для расчёта вероятных вспышек от ГСС.
  • 30.01.2013: Обновлена "Глава 3" -- добавлена информация по работе с рограммой "MagVision" для расчёта падения проницания от засветки со стороны Солнца и Луны.
  • 22.01.2013: Обновлена Глава 2. Добавлена анимация движения спутников по небу за одну минуту.
  • 19.01.2013: Обновлён подпункт "Визуальные наблюдения ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про устройства подогрева электроники и оптики для защиты от выпадения росы, инея и от излищнего охлаждения.
  • 19.01.2013: Добавлена в "Главу 3" информация про падение проницания при засветке от Луны и сумерек.
  • 09.01.2013: Добавлен подпункт "Вспышки от лидара ИСЗ "CALIPSO" подпункта "Фотографирование вспышек" п. II "Фотометрия ИСЗ" §1 Главы 5. Описана информация по особенностям наблюдения вспышек от лазерного лидара ИСЗ "CALIPSO" и процесс подготовки к ним.
  • 05.11.2012: Обновлена вводная часть §2 Главы 5. Добавлена информация о необходимом минимуме оборудования для радионаблюдений ИСЗ, а также приведена схема светодиодного индикатора уровня сигнала, который используется для выставления безопасного для диктофона уровня входного аудио-сигнала.
  • 04.11.2012: Обновлён подпункт "Визуальные наблюдения ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про звёздный атлас Брно, а также про красную плёнку на ЖКИ-экраны электронных устройств, используемых при наблюдениях.
  • 14.04.2012: Обновлён подпункт подпункта "Фото/видео съёмка ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про работу с программой "SatIR" для отождествления ИСЗ на фотографиях с широким полем зрения, а также определение координат концов треков ИСЗ на них.
  • 13.04.2012: Обновлён подпункт "Астрометрия ИСЗ на полученных снимках: фото и видео" подпункта "Фото/видео съёмка ИСЗ" п.1 "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация про работу с программой "AstroTortilla" для определения координат центра поля зрения снимков участков звёздного неба.
  • 20.03.2012: Обновлён подпункт п.2 "Классификация орбит ИСЗ по величине большой полуоси" §1 Главы 2. Добавлена информация про величину дрейфа ГСС и возмущений орбиты.
  • 02.03.2012: Добавлен подпункт "Наблюдения и съемка запусков ракет на отдалении" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Описана информация по особенностям наблюдения полёта ракет-носителей на этапе выведения.
  • "Конвертирование астрометрии в IOD-формат" подпункта "Фото/видео съёмка ИСЗ" п.I "Определение орбит ИСЗ" §1 Главы 5. Добавлено описание работы с программой "ObsEntry for Window" для конвертации астрометрии ИСЗ в IOD-формат -- аналог программы "OBSENTRY", но для ОС Windows.
  • 25.02.2012: Обновлён подпункт "Солнечно-синхронные орбиты" п.1 "Классификация орбит ИСЗ по наклонению" §1 Главы 2. Добавлена информация о расчёте значения наклонения i ss солнечно-синхронной орбиты ИСЗ в зависимости от эксцентриситета и большой полуоси орбиты.
  • 21.09.2011: Обновлён подпункт подпункта 2 "Фотометрия ИСЗ за пролёт" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о синодическом эффекте, искажающем определение периода вращения ИСЗ.
  • 14.09.2011: Обновлён подпункт "Расчёт орбитальных (кеплеровских) элементов орбиты ИСЗ на основе астрометрических данных. Один пролёт" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация о программе "SatID" для идентификации спутника (используя полученные TLE) среди спутников из сторонней базы TLE, а также описан метод идентификации спутника в программе "Heavensat" на основе увиденного пролёта возле опорной звезды.
  • 12.09.2011: Обновлён подпункт "Расчёт орбитальных (кеплеровских) элементов орбиты ИСЗ на основе астрометрических данных. Несколько пролётов" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Добавлена информация о программе пересчёта TLE-элементов на нужную дату.
  • 12.09.2011: Добавлен подпункт "Вхождение ИСЗ в атмосферу Земли" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Описана информация по работе с программой "SatEvo" для предсказания даты вхождения ИСЗ в плотные слои атмосферы Земли.
  • "Вспышки от геостационарных ИСЗ" подпункта "Фотографирование вспышек" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о периоде видимости вспышек ГСС.
  • 08.09.2011: Обновлён подпункт "Изменение блеска ИСЗ в течении пролёта" подпункта 2 "Фотометрия ИСЗ за пролёт" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о виде фазовой функции для нескольких примеров отражающих поверхностей.
  • подпункта 1 "Наблюдение вспышек ИСЗ" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена информация о неравномерности шкалы времени вдоль изображения трека ИСЗ на матрице фотоприёмника.
  • 07.09.2011: Обновлён подпункт "Фотометрия ИСЗ за пролёт" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлен пример сложной кривой блеска ИСЗ "NanoSail-D" (SCN:37361) и моделирование его вращения.
  • "Вспышки от низкоорбитальных ИСЗ" подпункта 1 "Наблюдение вспышек ИСЗ" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлены фотография и фотометрический профиль вспышки от LEO ИСЗ "METEOR 1-29".
  • 06.09.2011: Обновлён подпункт "Геостационарные и геосинхронные орбиты ИСЗ" §1 Главы 2. Добавлена информация по классификации геостационарных ИСЗ, информация о форме траекторий ГСС.
  • 06.09.2011: Обновлён подпункт "Съёмка пролёта ИСЗ: оборудование для съёмки. Оптические элементы" подпункта "Фото/видео съёмка ИСЗ" п. I "Определение орбит ИСЗ" §1 Главы 5. Добавлены ссылки на обзоры отечественных объективов в применении к съёмке ИСЗ.
  • 06.09.2011: Обновлён подпункт "Фазовый угол" п. II "Фотометрия ИСЗ" §1 Главы 5. Добавлена анимация изменения фазы спутника в зависимости от фазового угла.
  • 13.07.2011: Закончено заполнение всех глав и разделов сайта.
  • 09.07.2011: Закончено написание вводной части к п. II "Фотометрия ИСЗ" §1 Главы 5.
  • 05.07.2011: Закончено написание вводной части к §2 "Радионаблюдения ИСЗ" Главы 5.
  • 04.07.2011: Обновлён подпункт "Обработка наблюдений" п. I "Приём телеметрии ИСЗ" §2 Главы 5.
  • 04.07.2011: Закончено написание п. II "Получение снимков облачности" §2 Главы 5.
  • 02.07.2011: Закончено написание п. I "Приём телеметрии ИСЗ" §2 Главы 5.
  • 01.07.2011: Закончено написание подпункта "Фото/видео съёмка ИСЗ" п. I §1 Главы 5.
  • 25.06.2011: Закончено написание Приложений .
  • 25.06.2011: Закончено написание вводной части к Главе 5: "Что и как наблюдать?"
  • 25.06.2011: Закончено написание вводной части к §1 "Оптические наблюдения" Главы 5.
  • 25.06.2011: Закончено написание вводной части к п. I "Определение орбит ИСЗ" §1 Главы 5.
  • 25.06.2011: Закончено написание Главы 4: "О времени" .
  • 25.01.2011: Закончено написание Главы 2: "Какие орбиты и ИСЗ бывают?" .
  • 07.01.2011: Закончено написание Главы 3: "Подготовка к наблюдениям" .
  • 07.01.2011: Закончено написание Главы 1: "Как движутся ИСЗ?"

Траектории движения искусственных космических аппаратов отличаются от орбит естественных небесных тел: дело в том, что в первом случае присутствуют так называемые «активные участки». Это те участки орбиты спутников , на которых они двигаются, включив реактивный двигатель. Таким образом, вычисление траектории движения космических аппаратов – сложная и ответственная задача, занимаются которой специалисты в области астродинамики .

Каждая спутниковая система обладает определенным статусом, зависящим от назначения спутника, его размещения, охвата обслуживаемой территории, принадлежности как самого космического аппарата, так и наземной станции, принимающей его сигналы. В зависимости от статуса, спутниковые системы бывают:

  • Международные (региональные или глобальные);
  • Национальные;
  • Ведомственные.

Кроме того, все орбиты подразделяются на геостационарные и негеостационарные (в свою очередь, делящиеся на LEO – низкоорбитальные, MEO – средневысотные и HEO – эллиптические). Рассмотрим эти классы подробнее.

Геостационарные спутниковые орбиты

Этот тип орбиты используется для размещения космических аппаратов чаще всего, ведь он обладает существенными преимуществами: возможна непрерывная круглосуточная связь, а сдвиг частоты практически отсутствует. Геостационарные спутники располагаются на высоте около 36000 км над поверхностью Земли и двигаются со скоростью ее вращения, как бы «зависая» над определенной точкой экватора, «подспутниковой точкой». Однако, на самом деле, положение такого спутника не неподвижно: он испытывает некоторый «дрейф» из-за ряда факторов, как следствие – орбита слегка смещается со временем.

Как уже отмечалось, геостационарный спутник практически не требует перерывов в работе, так как отсутствует взаимное перемещение космического аппарата и его наземной станции. Система, состоящая из трех спутников этого типа, способна обеспечить охват почти всей земной поверхности.

Вместе с тем, такие системы не лишены и определенных недостатков, главный из которых – некоторая задержка сигнала. Поэтому спутники на геостационарных орбитах применяются чаще всего для осуществления радио- и телевещания, в которых задержки в обоих направлениях 250 мс не сказываются на качестве сигнала. Существенно более ощутимыми оказываются задержки в системе радиотелефонной связи (с учетом обработки сигнала в наземных сетях, суммарное время уже примерно 600 мс). Кроме того, зона охвата подобных спутников не включает высокоширотные районы (свыше 76,50° с.ш . и ю.ш .), то есть действительно глобальный охват не гарантируется.

В связи с бурным развитием спутниковой связи, в последнее десятилетие на геостационарной орбите стало «тесно», а с размещением новых аппаратов возникают проблемы. Дело в том, что, в соответствии с международными нормами, на околоэкваториальной орбите можно разместить не более 360-ти спутников, иначе будут возникать взаимные помехи.

Средневысотные орбиты спутников

Спутниковые системы этого типа начали разрабатывать компании, занимающиеся изначально выпуском геостационарных космических аппаратов. Средневысотная орбита обеспечивает более качественные показатели связи для подвижных абонентов, так как каждый пользователь мобильной связью оказывается в поле достижения одновременно нескольких спутников; суммарная задержка – не более 130 мс.

Местоположение негеостационарного спутника ограничено так называемыми радиационными поясами Ван-Аллена, пространственными поясами заряженных частиц, которые были «захвачены» магнитным полем Земли. Первый из устойчивых поясов высокой радиации находится примерно на высоте 1500 км от поверхности планеты, его размах – несколько тысяч километров. Второй пояс – с такой же высокой интенсивностью (10 000 имп ./с), находится в пределах 13000–19000 км от Земли.

Своеобразная «трасса» для средневысотных спутников располагается между первым и вторым радиационными поясами, то есть на высоте 5000–15000 км. Эти аппараты слабее геостационарных, поэтому для полного покрытия поверхности Земли необходима орбитальная группа из 8-12 спутников (например, Spaceway NGSO, ICO, «Ростелесат »); каждый спутник находится в зоне радиовидимости наземной станции недолго, примерно 1,5-2 ч.

Низкие круговые орбиты спутников

Спутники на низких орбитах (700-1500 км) обладают некоторыми преимуществами перед другими космическими аппаратами по энергетическим характеристикам, однако, проигрывают в длительности сеансов связи, а также общем сроке службы. Период обращения спутника, в среднем, составляет 100 мин, при этом примерно 30% этого времени он пребывает на теневой стороне планеты. Аккумуляторные бортовые батареи способны испытать в год около 5000 циклов зарядки/разрядки, как результат – срок их работы не превышает 5-8 лет.

Выбор подобного диапазона высот для низкоорбитальных спутниковых систем неслучаен. На высоте менее 700 км относительно высокая плотность атмосферы, что вызывает «деградацию» орбиты – постепенное отклонение от курса, для его сохранения требуются повышенные затраты топлива. На высоте же 1500 км начинается первый пояс Ван-Аллена, в зоне радиации которого практически невозможна работа бортовой аппаратуры.

Однако в связи с низкой высотой орбиты, для охвата всей территории Земли требуется орбитальная группировка из не менее чем 48 космических аппаратов. Период вращения на этих орбитах – 90 мин-2 ч, при этом максимальное время пребывания спутника в зоне радиовидимости – всего 10-15 мин.

Эллиптические орбиты

Эллиптические орбиты спутников Земли являются синхронными, то есть, будучи выведенными на орбиту, они вращаются со скоростью планеты, а период обращения кратен суткам. В настоящее время используется несколько типов подобных орбит: Archi-medes , Borealis , «Тундра»,«Молния».

Скорость эллиптического спутника в апогее (при достижении вершины «эллипса») ниже, чем в перигее, поэтому в этот период аппарат может находиться в зоне радиовидимости определенного региона дольше, чем спутник с круговой орбитой. Сеансы связи, к примеру, у «Молнии» длятся 8-10 ч, а система из трех спутников способна поддерживать круглосуточную глобальную связь.

Траектория движения ИСЗ называется орбитой. Во время свободного полета спутника, когда его бортовые реактивные двигатели выключены, движение происходит под воздействием гравитационных сил и по инерции, причем главной силой является притяжение Земли.

Если считать Землю строго сферической, а действие гравитационного поля Земли - единственной силой, воздействующей на спутник, то движение ИСЗ подчиняется известным законам Кеплера: оно происходит в неподвижной (в абсолютном пространстве) плоскости, проходящей через центр Земли, - плоскости орбиты; орбита имеет форму эллипса (рис 3.1) или окружности (частный случай эллипса).

При движении спутника полная механическая энергия (кинетическая и потенциальная) остается неизменной, вследствие чего при удалении спутника от Земли скорость его движения уменьшается. В случае эллиптической орбиты точкой перигея называют точку орбиты, соответствующую наименьшему значению радиус-вектора r = rп, точкой апогея - точку, соответствующую наибольшему значению r = ra (рис. 3.2).

Земля находится в одном из фокусов эллипса. Входящие в формулу (3.1) величины связаны соотношениями:Расстояние между фокусами и центром эллипса составляет ае, т. е. пропорционально эксцентриситету. Высота спутника над поверхностью Земли

где R - радиус Земли. Линия пересечения плоскости орбиты с плоскостью экватора (а - а на рис. 3.1) называется линией узлов, угол i между плоскостью орбиты и плоскостью экватора - наклонением орбиты. По наклонению различают экваториальные (i = 0°), полярные (i = 90°) и наклонные орбиты,(0°90°

Орбита спутника характеризуется также долготой апогея д - долгота подспутниковой точки (точка пересечения радиуса-вектора с поверхностью Земли) в момент прохождения спутником апогея и периодом обращения Т (время между двумя последовательными прохождениями одной и той же точки орбиты).

Для систем связи и вещания необходимо, чтобы имелась прямая видимость между спутником и соответствующими земными станциями в течение сеанса связи достаточной длительности. Если сеанс не круглосуточный, то удобно, чтобы он повторялся ежесуточно в одно и то же время. Поэтому предпочтительны синхронные орбиты с периодом обращения, равным или кратным времени оборота Земли вокруг оси, т. е. звездным суткам (23 ч 56 мин 4 с).

Широкое применение нашла высокая эллиптическая орбита с периодом обращения 12 ч, когда для систем связи и вешания использовались спутники «Молния» (высота перигея 500 км, апогея - 40 тыс. км). Движение ИСЗ на большой высоте - в области апогея - замедляется, а область перигея, расположенную над южным полушарием Земли, спутник проходит очень быстро. Зона видимости ИСЗ на орбите типа «Молния» в течение большей части витка вследствие значительной высоты велика. Она расположена в северном полушарии и поэтому удобна для северных стран. Обслуживание всей территории бывшего СССР одним из ИСЗ возможно в течение не менее 8 ч, поэтому трех ИСЗ, сменяющих друг друга, было достаточно для круглосуточной работы. В настоящее время ради исключения перерывов связи и вещания, упрощения систем наведения антенн земных станций на ИСЗ и других эксплуатационных преимуществ осуществлен переход на использование геостационарных орбит (ГСО) спутников Земли.



Орбита геостационарного ИСЗ - это круговая (эксцентриситет е = 0), экваториальная (наклонение i = 0°), синхронная орбита с периодом обращения 24 ч, с движением спутника в восточном направлении. Орбиту ГСО еще в 1945 г. рассчитал и предложил использовать для спутников связи английский инженер Артур Кларк, известный впоследствии как писатель-фантаст. В Англии и многих других странах геостационарную орбиту называют «Пояс Кларка»

Орбита имеет форму окружности, лежащей в плоскости земного экватора с высотой над поверхностью Земли 35 786 км. Направление вращения ИСЗ совпадает с направлением суточного вращения Земли. Поэтому для земного наблюдателя спутник кажется неподвижным в определенной точке небесной полусферы.

Геостационарная орбита уникальна тем, что ни при каком другом сочетании параметров нельзя добиться неподвижности свободно движущегося ИСЗ относительно земного наблюдателя. Необходимо отметить некоторые достоинства геостационарных ИСЗ. Связь осуществляется непрерывно, круглосуточно, без переходов (заходящего ИСЗ на другой); на антеннах земных станций упрощены, а на некоторых даже исключены системы автоматического сопровождения ИСЗ; механизм привода (перемещения) передающей и приемной антенн облегчен, упрошен, сделан более экономичным; достигнуто более стабильное значение ослабления сигнала на трассе Земля - Космос; зона видимости геостационарного ИСЗ около одной трети земной поверхности; трех геостационарных ИСЗ достаточно для создания глобальной системы связи; отсутствует (или становится весьма малым) частотный сдвиг, обусловленный эффектом Доплера.

Эффектом Доплера называют физическое явление, заключающееся в изменении частоты высокочастотных электромагнитных колебаний при взаимном перемещении передатчика и приемника. Эффект Доплера объясняется изме

нением расстояния во времени. Этот эффект может возникнуть также и при движении ИСЗ на орбите. На линиях связи через строго гестационарный спутник доплеровский сдвиг не возникает, на реальных геостационарных ИСЗ - мало существен, а на сильно вытянутых эллиптических или низких круговых орбитах может быть значительным. Эффект проявляется как нестабильность несущей частоты ретранслируемых спутником колебаний, которая добавляется к аппаратурной нестабильности частоты, возникающей в аппаратуре бортового ретранслятора и земной станции. Эта нестабильность может существенно осложнять прием сигналов, приводя к снижению помехоустойчивости приема.

К сожалению, эффект Доплера способствует изменению частоты модулирующих колебаний. Это сжатие (или расширение) спектра передаваемого сигнала невозможно контролировать аппаратурными методами, так что если сдвиг частоты превысит допустимые пределы (например, 2 Гц для некоторых типов аппаратуры частотного разделения каналов), то канал оказывается неприемлемым.

Существенное влияние на свойства каналов связи оказывает и запаздывание радиосигнала при его распространении по линии Земля - ИСЗ - Земля.

При передаче симплексных (однонаправленных) сообщений (программ телевидения, звукового вешания и других дискретных (прерывистых) сообщений это запаздывание не ощущается потребителем. Однако при дуплексной (двусторонней) связи запаздывание на несколько секунд уже заметно. Например, электромагнитная волна от Земли на ГСО и обратно «путешествует» 2...4 с (с учетом задержки сигнала в аппаратуре ИСЗ) и наземной аппаратуре. В этом случае не имеет смысла передавать сигналы точного времени.

Вывод геостационарного спутника на орбиту обычно осуществляется многоступенчатой ракетой через промежуточную орбиту. Современная ракета-носитель представляет собой сложный космический летательный аппарат, который приводится в движение реактивной силой ракетного двигателя.

В состав ракеты-носителя входят ракетный и головной блоки. Ракетный блок является автономной частью составной ракеты с топливным отсеком, двигательной установкой и элементами системы разделения ступеней. Головной блок включает в себя полезную нагрузку и обтекатель, защищающий конструкцию ИСЗ от силового и теплового воздействий набегающего потока воздуха при полете в атмосфере и служащего для монтажа на его внутренней поверхности элементов, которые участвуют в подготовке к пуску, но не функционируют в полете. Главный обтекатель позволяет облегчить конструкцию ИСЗ и является пассивным элементом, надобность в котором отпадает после выхода ракеты-носителя из плотных слоев атмосферы, где он сбрасывается. Полезная нагрузка космического аппарата состоит из ретрансляционного оборудования связи и вещания, радиотелеметрических систем, собственно корпуса ИСЗ со всеми вспомогательными и обеспечивающими системами.

Принцип действий одноразовой многоступенчатой ракеты-носителя состоит в следующем: пока работает первая ступень, можно рассматривать остальные вместе с истинной полезной нагрузкой в качестве полезной нагрузки первой ступени. После ее отделения начинает работать вторая, которая вместе с последующими ступенями и истинной полезной нагрузкой образует новую самостоятельную ракету. Для второй ступени все последующие (если они есть) вместе с истинным полезным грузом играют роль полезной нагрузки и так далее, т. е. полет ее характеризуется несколькими этапами, каждый из которых является как бы ступенью для сообщения начальной скорости другим одноступенчатым ракетам, входящим в ее состав. При этом начальная скорость каждой последующей одноступенчатой ракеты равна конечной скорости предыдущей. Отторжение первой и последующих ступеней носителя осуществляется после полного выгорания топлива в двигательной установке.

Путь, который проходит ракета-носитель при выведении ИСЗ на орбиту, называют траекторией полета. Он характеризуется активным и пассивным участками. Активный участок полета - это пролет ступеней носителя с работающими двигателями, пассивный участок - полет отработавших ракетных блоков после их отделения от ракеты-носителя.

Носитель,стартуя вертикально (участок 1, расположенный на высоте 185... 250 км), выходит затем на криволиней ный активный участок 2 в восточном направлении. На этом участке первая ступень обеспечивает постепенное уменьшение угла наклона ее оси по отношению к местному горизонту. Участки 3, 4 - соответственно активные участки полета второй и третьей ступеней, 5 - орбита ИСЗ, 6, 7 - пассивные участки полета ракетных блоков первой и второй ступеней (рис. 3.4). При выведении ИСЗ на соответствующую орбиту большую роль играют время и место запуска ракеты-носителя. Подсчитано, что космодром выгоднее располагать как можно ближе к экватору, так как при разгоне в восточном направлении ракета-носитель получает дополнительную скорость. Эта скорость называется окружной скоростью космодрома Vк, т. е. скорость его движения вокруг оси Земли благодаря суточному вращению планеты.т. е. на экваторе она равна 465 м/с, а на широте космодрома Байконур - 316 м/с. Практически это означает, что с экватора той же ракетой-носителем может быть запушен более тяжелый ИСЗ.

Завершающей стадией полета ракеты-носителя является вывод ИСЗ на орбиту, форма которой определяется кинетической энергией, сообщаемой ИСЗ ракетой, т. е. конечной скоростью носителя. В том случае, когда спутнику сообщается количество энергии, достаточное для его вывода на ГСО, ракета-носитель должна вывести в точку, удаленную от Земли на 35 875 км, и сообщить ему при этом скорость 3075 м/с.

Орбитальную скорость геостационарного ИСЗ легко подсчитать. Высота ГСО над поверхностью Земли 35 786 км, радиус ГСО на 6366 км больше (средний радиус Земли), т. е. 42 241 км. Умножив значение радиуса ГСО на 2л (6,28), получим ее длину окружности - 265 409 км. Если разделить ее на длительность суток в секундах (86 400 с), получим орбитальную скорость ИСЗ - в среднем 3,075 км/с, или 3075 м/с.

Обычно вывод спутника ракетой-носителем осуществляется в четыре этапа: выход на начальную орбиту; выход на орбиту «ожидания» (парковочную орбиту); выход на переходную орбиту; выход на конечную орбиту (рис. 3.5). Цифрам соответствуют следующие этапы вывода спутника на ГСО: 1 - первоначальная переходная орбита; 2 - первое включение апогейного двигателя для выхода на промежуточную переходную орбиту; 3 - определение положения на орбите; 4 - второе включение апогейного двигателя для выхода на первоначальную орбиту дрейфа; 5 - переориентация плоскости орбиты и коррекция ошибок; 6 - ориентация перпендикулярно к плоскости орбиты и коррекция ошибок; 7 - остановка платформы спутника, раскрытие панелей, полная расстыковка с ракетой; 8 - раскрытие антенн, включение гиростабилизатора; 9 - стабилизация положения: ориентация антенн на нужную точку Земли, ориентация солнечных батарей на Солнце, включение бортового ретранслятора и установление номинального режима его работы.

Что собой представляет геостационарная орбита? Это круговое поле, которое расположилось над экватором Земли, по нему искусственный спутник обращается с угловой скоростью вращения планеты вокруг оси. Он не изменяет свое направление в горизонтальной системе координат, а неподвижно висит в небе. Геостационарная орбита Земли (ГСО)представляет собой разновидность геосинхронного поля и применяется для размещения коммуникационных, телетрансляционных и других спутников.

Идея использования искусственных аппаратов

Само понятие геостационарной орбиты инициировано русским изобретателем К. Э. Циолковским. В своих работах он предлагал заселить космос с помощью орбитальных станций. Зарубежные ученые также описывали работы космических полей, например, Г. Оберт. Человеком, который развил концепцию использования орбиты для связи, является Артур Кларк. Он в 1945 году поместил статью в журнале «Wireless World», где описал преимущества работы геостационарного поля. За активный труд в данной области в честь ученого орбита получила свое второе название - «пояс Кларка». Над проблемой осуществления качественной связи думали многие теоретики. Так, Герман Поточник в 1928 году высказал мысль о том, как можно применять геостационарные спутники.

Характеристика «пояса Кларка»

Чтобы орбита была названа геостационарной, она должна отвечать ряду параметров:

1. Геосинхронность. К такой характеристике относится поле, которое имеет период, соответствующий периоду обращения Земли. Геосинхронный спутник заканчивает оборот вокруг планеты за сидерический день, который равен 23 часам 56 минутам и 4 секундам. То же время необходимо Земле для выполнения одного оборота в фиксированном пространстве.

2. Для поддержания спутника на определенной точке геостационарная орбита должна быть круговой, с нулевым наклонением. Эллиптическое поле приведет к смещению либо к востоку, либо к западу, так как аппарат движется в определенных точках орбиты по-разному.

3. «Точка зависания» космического механизма должна находиться на экваторе.

4. Расположение спутников на геостационарной орбите должны быть таким, чтобы небольшое количество частот, предназначенных для связи, не привело к наложению частот разных аппаратов при приеме и передаче, а также для исключения их столкновения.

5. Достаточное количество топлива для поддержания неизменного положения космического механизма.

Геостационарная орбита спутника уникальна тем, что только при сочетании ее параметров можно добиться неподвижности аппарата. Еще одной особенностью является возможность видеть Землю под углом в семнадцать градусов из расположенных на космическом поле спутников. Каждый аппарат отхватывает примерно одну третью часть поверхности орбиты, поэтому три механизма способны обеспечить охват почти всей планеты.

Искусственные спутники

Летательный аппарат вращается вокруг Земли по геоцентрическому пути. Для его вывода используют многоступенчатую ракету. Она представляет собой космический механизм, который приводит в действие реактивная сила двигателя. Для движения по орбите искусственные спутники Земли должны иметь начальную скорость, которая соответствует первой космической. Их полеты осуществляются на высоте не меньше нескольких сотен километров. Период обращения аппарата может составлять несколько лет. Искусственные спутники Земли могут запускаться с бортов других аппаратов, например, орбитальных станций и кораблей. Беспилотники имеют массу до двух десятков тонн и размер до нескольких десятков метров. Двадцать первый век ознаменовался рождением аппаратов со сверхмалым весом - до несколько килограммов.

Спутники запускались многими странами и компаниями. Первый в мире искусственный аппарат был создан в СССР и полетел в космос 4 октября 1957 года. Он носил имя «Спутник-1». В 1958 году США запустила второй аппарат - «Эксплорер-1». Первый спутник, который был выведен NASA в 1964 году, носил имя Syncom-3. Искусственные аппараты в основном невозвратные, но есть те, которые возвращаются частично или полностью. Их используют для проведения научных исследований и решения различных задач. Так, существуют военные, исследовательские, навигационные спутники и другие. Также запускаются аппараты, созданные сотрудниками университетов или радиолюбителями.

«Точка стояния»

Геостационарные спутники располагаются на высоте 35786 километров над уровнем моря. Такая высота обеспечивает период обращения, который соответствует периоду циркуляции Земли по отношению к звездам. Искусственный аппарат неподвижен, поэтому его местоположение на геостационарной орбите называется «точкой стояния». Зависание обеспечивает постоянную длительную связь, однажды сориентированная антенна всегда будет направлена на нужный спутник.

Передвижение

Спутники можно переводить с низковысотной орбиты на геостационарную с помощью геопереходных полей. Последние представляют собой эллиптический путь с точкой на низкой высоте и пиком на высоте, которая близка к геостационарному кругу. Спутник, который стал непригодным для дальнейшей работы, отправляется на орбиту захоронения, расположенную на 200-300 километров выше ГСО.

Высота геостационарной орбиты

Спутник на данном поле держится на определенном расстоянии от Земли, не приближаясь и не удаляясь. Он всегда находится над какой-либо точкой экватора. Исходя из данных особенностей следует вывод, что силы гравитации и центробежная сила уравновешивают друг друга. Высота геостационарной орбиты рассчитывается методами, в основе которых лежит классическая механика. При этом учитывается соответствие гравитационных и центробежных сил. Значение первой величины определяется с помощью закона всемирного тяготения Ньютона. Показатель центробежной силы рассчитывается путем произведения массы спутника на центростремительное ускорение. Итогом равенства гравитационной и инертной массы является заключение о том, что высота орбиты не зависит от массы спутника. Поэтому геостационарная орбита определяется только высотой, при которой центробежная сила равна по модулю и противоположна по направлению гравитационной силе, создающейся притяжением Земли на данной высоте.

Из формулы расчета центростремительного ускорения можно найти угловую скорость. Радиус геостационарной орбиты определяется также по этой формуле либо путем деления геоцентрической гравитационной постоянной на угловую скорость в квадрате. Он составляет 42164 километра. Учитывая экваториальный радиус Земли, получаем высоту, равную 35786 километрам.

Вычисления можно провести другим путем, основываясь на утверждении, что высота орбиты, представляющая собой удаление от центра Земли, с угловой скоростью спутника, совпадающей с движением вращения планеты, рождает линейную скорость, которая равна первой космической на данной высоте.

Скорость на геостационарной орбите. Длина

Данный показатель рассчитывается путем умножения угловой скорости на радиус поля. Значение скорости на орбите равно 3,07 километра в секунду, что намного меньше первой космической скорости на околоземном пути. Чтобы уменьшить показатель, необходимо увеличить радиус орбиты более чем в шесть раз. Длина рассчитывается произведением числа Пи на радиус, умноженным на два. Она составляет 264924 километра. Показатель учитывается при вычислении «точек стояния» спутников.

Влияние сил

Параметры орбиты, по которой обращается искусственный механизм, могут изменяться под действием гравитационных лунно-солнечных возмущений, неоднородности поля Земли, эллиптичности экватора. Трансформация поля выражается в таких явлениях, как:

  1. Смещение спутника от своей позиции вдоль орбиты в сторону точек стабильного равновесия, которые носят название потенциальных ям геостационарной орбиты.
  2. Угол наклона поля к экватору растет с определенной скоростью и достигает 15 градусов один раз за 26 лет и 5 месяцев.

Для удержания спутника в нужной «точке стояния» его оснащают двигательной установкой, которую включают несколько раз в 10-15 суток. Так, для восполнения роста наклонения орбиты используют коррекцию «север-юг», а для компенсации дрейфа вдоль поля - «запад-восток». Для регулирования пути спутника в течение всего срока его работы необходим большой запас топлива на борту.

Двигательные установки

Выбор приспособления определяется индивидуальными техническими особенностями спутника. Например, химический ракетный двигатель имеет вытеснительную подачу топлива и функционирует на долго хранимых высококипящих компонентах (диазотный тетроксид, несимметричный диметилгидразин). Плазменные устройства имеют существенно меньшую тягу, но за счет продолжительной работы, которая измеряется десятками минут для единичного передвижения, способны значительно снизить потребляемое количество топлива на борту. Такой тип двигательной установки используется для маневра перевода спутника в другую орбитальную позицию. Основным ограничивающим фактором срока службы аппарата является запас топлива на геостационарной орбите.

Недостатки искусственного поля

Существенным пороком во взаимодействии с геостационарными спутниками являются большие запоздания в распространении сигнала. Так, при скорости света 300 тысяч километров в секунду и высоте орбиты 35786 километров движение луча «Земля - спутник» занимает около 0,12 секунды, а «Земля - спутник - Земля» - 0,24 секунды. Учитывая задержку сигнала в аппаратуре и кабельных системах передач наземных служб общее запоздание сигнала «источник - спутник - приемник» достигает примерно 2-4 секунд. Такой показатель существенно затрудняет применение аппаратов на орбите в телефонии и делает невозможным использование спутниковой связи в системах реального времени.

Еще одним недостатком является невидимость геостационарной орбиты с высоких широт, что мешает проводимости связи и телетрансляций в районах Арктики и Антарктиды. В ситуациях, когда солнце и спутник-передатчик находятся на одной линии с приемной антенной, наблюдается уменьшение, а порой и полное отсутствие сигнала. На геостационарных орбитах за счет неподвижности спутника такое явление проявляется особенно ярко.

Эффект Допплера

Этот феномен заключается в изменении частот электромагнитных вибраций при взаимном продвижении передатчика и приемника. Явление выражается изменением расстояния во времени, а также движением искусственных аппаратов на орбите. Эффект проявляется как малоустойчивость несущей частоты колебаний спутника, которая прибавляется к аппаратурной нестабильности частоты бортового ретранслятора и земной станции, что осложняет прием сигналов. Эффект Допплера содействует изменению частоты модулирующих вибраций, что невозможно контролировать. В случае, когда на орбите используются спутники связи и непосредственного телевизионного вещания, данное явление практически устраняется, то есть не наблюдается изменений уровня сигналов в точке приема.

Отношение в мире к геостационарным полям

Космическая орбита своим рождением создала много вопросов и международно-правовых проблем. Их решением занимается ряд комитетов, в частности, Организация Объединенных Наций. Некоторые страны, расположенные на экваторе, предъявляли претензии на распространение их суверенитета на находящуюся над их территорией часть космического поля. Государства заявляли, что геостационарная орбита представляет собой физический фактор, который связан с существованием планеты и зависит от гравитационного поля Земли, поэтому сегменты поля являются продолжением территории их стран. Но такие притязания были отвергнуты, так как в мире существует принцип неприсвоения космического пространства. Все проблемы, связанные с работой орбит и спутников, разрешаются на мировом уровне.



Поделиться: