Как рассчитывается погрешность. Вычисление абсолютной и относительной погрешности

Абсолютная и относительная погрешность числа.

В качестве характеристик точности приближенных величин любого происхождения вводятся понятия абсолютной и относительной погрешности этих величин.

Обозначим через а приближение к точному числу А.

Определени . Величина называется погрешностью приближенного числаа.

Определение . Абсолютной погрешностью приближенного числа а называется величина
.

Практически точное число А обычно неизвестно, но мы всегда можем указать границы, в которых изменяется абсолютная погрешность.

Определение . Предельной абсолютной погрешностью приближенного числа а называется наименьшая из верхних границ для величины , которую можно найти при данном способе получения числаа.

На практике в качестве выбирают одну из верхних границ для , достаточно близкую к наименьшей.

Поскольку
, то
. Иногда пишут:
.

Абсолютная погрешность - это разница между результатом измерения

и истинным (действительным) значением измеряемой величины.

Абсолютная погрешность и предельная абсолютная погрешность не достаточны для характеристики точности измерения или вычисления. Качественно более существенна величина относительной погрешности.

Определение . Относительной погрешностью приближенного числа а назовем величину:

Определение . Предельной относительной погрешностью приближенного числа а назовем величину

Так как
.

Таким образом, относительная погрешность определяет фактически величину абсолютной погрешности, приходящейся на единицу измеряемого или вычисляемого приближенного числа а.

Пример. Округляя точные числа А до трех значащих цифр, определить

абсолютную Dи относительную δ погрешности полученных приближенных

Дано:

Найти:

∆-абсолютная погрешность

δ –относительная погрешность

Решение:

=|-13.327-(-13.3)|=0.027

,a0

*100%=0.203%

Ответ: =0,027; δ=0.203%

2.Десятичная запись приближенного числа. Значащая цифра. Верные знаки числа(определение верных и значащих цифр, примеры; теория о связи относительной погрешности и числа верных знаков).

Верные знаки числа.

Определение . Значащей цифрой приближенного числа а называется всякая цифра, отличная от нуля, и нуль, если он расположен между значащими цифрами или является представителем сохраненного десятичного разряда.

Например, в числе 0,00507 =
имеем 3 значащие цифры, а в числе 0,005070=
значащие цифры, т.е. нуль справа, сохраняя десятичный разряд, является значащим.

Условимся впредь нули справа записывать, если только они являются значащими. Тогда, иначе говоря,

значащими являются все цифры числа а, кроме нулей слева.

В десятичной системе счисления всякое число а может быть представлено в виде конечной или бесконечной суммы (десятичной дроби):

где
,
- первая значащая цифра, m - целое число, называемое старшим десятичным разрядом числа а.

Например, 518,3 =, m=2.

Пользуясь записью , введем понятие о верных десятичных знаках (в значащих цифрах) приближенно-

го числа.

Определение . Говорят, что в приближенном числе а формы n - первых значащих цифр ,

где i= m, m-1,..., m-n+1 являются верными, если абсолютная погрешность этого числа не превышает половины единицы разряда, выражаемого n-й значащей цифрой:

В противном случае последняя цифра
называется сомнительной.

При записи приближенного числа без указания его погрешности требуют, чтобы все записанные цифры

были верными. Это требование соблюдено во всех математических таблицах.

Термин “n верных знаков” характеризует лишь степень точности приближенного числа и его не следует понимать так, что n первых значащих цифр приближенного числа а совпадает с соответствующими цифрами точного числа А. Например, у чисел А=10, а=9,997 все значащие цифры различны, но число а имеет 3 верных значащих цифры. Действительно, здесь m=0 и n=3 (находим подбором).

ИЗМЕРЕНИЕ ФИЗИЧЕСКИХ ВЕЛИЧИН.

ВВЕДЕНИЕ

Комплекс К-402.1 представляет собой необходимый перечень лабораторных работ, предусмотренных образовательным стандартом и рабочей программой по разделу «Динамика твердого тела» дисциплины «Физика». Он включает в себя описание лабораторных установок, порядок измерений и алгоритм расчета определенных физических величин.

Если знакомство с конкретной работой студент начинает в аудитории во время занятии, то двух часов, отводимых на выполнение одной лабораторной работы, ему не хватит и начнется отставание от семестрового графика выполнения работ. Для исключения этого образовательным стандартом второго поколения 50 % от объема часов, отводимых на изучение дисциплины, приходится на самостоятельную работу, которая является необходимым компонентом процесса обучения. Целью самостоятельной работы является закрепление и углубление знаний и навыков, подготовка к лекциям, практическим и лабораторным занятиям, а также формирование у студентов самостоятельности в приобретении новых знаний и умений.

Учебными планами для различных специальностей предусмотрено на самостоятельное изучение дисциплины «Физика» в течение семестра от 60 до 120 часов. Из них на лабораторные занятия приходится 20–40 часов, или 2–4 часа на одну работу. В течение этого времени студент должен: прочитать соответствующие параграфы в учебниках; выучить основные формулы и законы; познакомиться с установкой и порядком измерений. Для допуска к выполнению работы на установке студент должен знать устройство установки, уметь определять цену деления измерительного прибора, знать последовательность измерений, уметь обрабатывать результаты измерений, оценивать погрешность.

После всех расчетов и оформления отчета студент должен сделать вывод, в котором конкретно указать те физические закономерности, которые были проверены в ходе выполнения работы.

Различают два вида измерений: прямые и косвенные.

Прямыми называются такие измерения, при которых производится сопоставление меры и объекта. Например, измеряют высоту и диаметр цилиндра с помощью штангенциркуля.

При косвенных измерениях физическая величина определяется на основании формулы, устанавливающей ее связь с величинами, найденными прямыми измерениями.

Измерение не может быть выполнено абсолютно точно. Его результат всегда содержит некоторую погрешность.

Погрешности измерений принято подразделять на систематические и случайные.

Систематические погрешности обусловлены факторами, действующими одинаковым образом при многократном повторении одних и тех же измерений.

Вклад в систематические погрешности вносит инструментальная или приборная погрешность , которая определяется чувствительностью прибора. При отсутствии таких данных на приборе за приборную погрешность принимают цену или половину цены наименьшего деления шкалы прибора.



Случайные погрешности вызваны одновременным действием многих факторов, которые невозможно учесть. Большинству измерений сопутствуют случайные погрешности, отличающиеся тем, что при каждом повторном измерении они принимают другое, заранее не предсказуемое значение.

Абсолютная погрешность будет включать в себя систематическую и случайную погрешности:

. (1.1)

Истинное значение измеряемой величины окажется в интервале:

который называют доверительным интервалом.

Для определения случайной погрешности вначале рассчитывают среднее из всех величин , полученных при измерении:

, (1.2)

где – результат i -го измерения, – число измерений.

Затем, находят погрешности отдельных измерений

, , …, .

. (1.3)

При обработке результатов измерений пользуются распределением Стьюдента. С учетом коэффициента Стьюдента случайная погрешность

.

Таблица 1.1

Таблица коэффициентов Стьюдента

n
0,6 0,7 0,9 0,95 0,99
1,36 2,0 6,3 12,7 636,6
1,06 1,3 2,9 4,3 31,6
0,98 1,3 2,4 3,2 12,9
0,94 1,2 2,1 2,8 8,7
0,85 1,0 1,7 2,0 3,5
0,84 1,0 1,7 2,0 3,4

Коэффициент Стьюдента показывает отклонение среднего арифметического от истинного значения , выраженного в долях от средней квадратичной погрешности . Коэффициент Стьюдента зависит от числа измерений n и от надежности и указан в табл. 1.1.

Абсолютная погрешность рассчитывается по формуле

.

В большинстве случаев более существенную роль играет не абсолютная , а относительная погрешность

Или . (1.4)

Все результаты расчетов заносят в табл. 1.2.

Таблица 1.2

Результата расчета погрешности измерений

№ п/п
мм мм мм мм 2 мм 2 мм мм мм мм мм %

Расчет погрешностей косвенных измерений

3.1 Среднеарифметическая погрешность. Как уже отмечалось раньше, измерения принципиально не могут быть абсолютно точными. Поэтому в ходе измерения возникает задача об определении интервала, в котором вероятнее всего находится истинное значение измеряемой величины. Такой интервал указывают в виде абсолютной ошибки измерения.

Если предположить, что грубые промахи в измерениях устранены, а систематические ошибки сведены к минимуму тщательной настройкой приборов и всей установки и не являются определяющими, то результаты измерений будут, в основном, содержать только случайные погрешности, которые являются знакопеременными величинами. Поэтому, если проведено несколько повторных измерений одной и той же величины, то наиболее вероятным значением измеряемой величины является ее среднеарифметическое значение:

Средней абсолютной ошибкой называется среднеарифметическое модулей абсолютных ошибок отдельных измерений:

Последнее неравенство обычно принято записывать как окончательный результат измерения следующим образом:

(5)

где абсолютная погрешность a ср должна вычисляться (округляться) с точностью до одной-двух значащих цифр. Абсолютная ошибка показывает, в каком знаке числа содержатся неточности, поэтому в выражении для а ср оставляют все верные цифры и одну сомнительную. То есть среднее значение и средняя ошибка измеряемой величины должны вычисляться до цифры одного и того же разряда. Например: g = (9,78 ± 0,24) м/с 2 .



Относительная погрешность. Абсолютная ошибка определяет интервал наиболее вероятных значений измеряемой величины, но не характеризует степень точности произведенных измерений. Например, расстояние между населенными пунктами, измеренное с точностью до нескольких метров, можно отнести к весьма точным измерениям, в то время как измерение диаметра проволоки с точностью до 1 мм, в большинстве случаев будет являться весьма приближенным измерением.

Степень точности проведенных измерений характеризует относительная погрешность.

Средней относительной погрешностью или просто относительной ошибкой измерения называется отношение средней абсолютной ошибки измерения к среднему значению измеряемой величины:

Относительная ошибка является безразмерной величиной и обычно выражается в процентах.

3.2 Погрешность метода или приборная погрешность. Среднеарифметическое значение измеряемой величины тем ближе к истинному, чем больше проведено измерений, при этом абсолютная погрешность измерения с увеличением их числа стремится к значению, которое определяется методом измерения и техническими характеристиками используемых приборов.

Погрешность метода или приборную погрешность можно рассчитать по одноразовому измерению, зная класс точности прибора или другие данные технического паспорта прибора, в котором указывается либо класс точности прибора, либо его абсолютная или относительная погрешность измерения.

Класс точности прибора выражает в процентах номинальную относительную ошибку прибора, то есть относительную ошибку измерения, когда измеряемая величина равна предельному для данного прибора значению

Абсолютная погрешность прибора не зависит от значения измеряемой величины.

Относительная погрешность прибора (по определению):

(10)

откуда видно, что относительная приборная ошибка тем меньше, чем ближе значение измеряемой величины к пределу измерения данного прибора. Поэтому ре­комендуется подбирать приборы так, чтобы измеряемая величина составляла 60 -90% от величины, на которую рассчитан прибор. При работе с многопредельными приборами тоже следует стремиться к тому, чтобы отсчет производился во второй половине шкалы.

При работе с простыми приборами (линейка, мензурка и т.п.), классы точности и погрешности которых не определены техническими характеристиками, абсолютную погрешность прямых измерений принимают равной половине цены деления данного прибора. (Ценой деления называют значение измеряемой величины при показаниях прибора в одно деление).

Приборную погрешность косвенных измерений можно рассчитать, используя правила приближенных вычислений. В основе вычисления погрешности косвенных измерений лежат два условия (предположения):

1. Абсолютные ошибки измерений всегда очень малы по сравнению с измеряемыми величинами. Поэтому абсолютные ошибки (в теории) можно рассматривать как бесконечно малые приращения измеряемых величин, и они могут быть заменены соответствующими дифференциалами.

2. Если физическая величина, которую определяют косвенным путем, является функцией одной или нескольких непосредственно измеряемых величин, то абсолютная ошибка функции, обусловленная бесконечно малыми приращениями, является также бесконечно малой величиной.

При указанных допущениях абсолютную и относительную погрешность можно рассчитать, используя известные выражения из теории дифференциального исчисления функций многих переменных:

(11)
(12)

Абсолютные ошибки непосредственных измерений могут иметь знаки "плюс" или "минус", но какой именно - неизвестно. Поэтому при определении погрешностей рассматривается наиболее невыгодный случай, когда ошибки прямых изме­рений отдельных величин имеют один и тот же знак, то есть абсолютная ошибка имеет максимальное значение. Поэтому при расчете приращений функции f(x 1 ,x 2 ,…,х n) по формулам (11) и (12) частные приращения должны складываться по абсолютной величине. Таким образом, используя приближение Dх i ≈ dx i , и вы­ражения (11) и (12), для бесконечно малых приращений можно записать:

(13)
(14)

Здесь: а - косвенно измеряемая физическая величина, то есть определяемая по расчетной формуле, - абсолютная ошибка ее измерения, х 1 , х 2 ,...х n ; Dх 1, Dx 2 ,..., Dх n , - физические величины прямых измерений и их абсолютные ошибки соответственно.

Таким образом: а) абсолютная ошибка косвенного метода измерения равна сумме модулей произведений частных производных функции измерения и соответствующих абсолютных ошибок прямых измерений; б) относительная ошибка косвенного метода измерения равна сумме модулей дифференциалов от логарифма натурального функции измерения, определяемой расчетной формулой.

Выражения (13) и (14) позволяют рассчитать абсолютные и относительные погрешности по одноразовому измерению. Заметим, что для сокращения расчетов по указанным формулам достаточно рассчитать одну из погрешностей (абсолютную или относительную), а другую рассчитать, используя простую связь между ними:

(15)

На практике чаще пользуются формулой (13), так как при логарифмировании расчетной формулы произведения различных величин преобразуются в соответствующие суммы, а степенные и показательные функции преобразуются в произведения, что намного упрощает процесс дифференцирования.

Для практического руководства по расчету погрешности косвенного метода измерения можно пользоваться следующим правилом:

Чтобы вычислить относительную ошибку косвенного метода измерения, нужно:

1. Определить абсолютные ошибки (приборные или средние) прямых измерений.

2. Прологарифмировать расчетную (рабочую) формулу.

3. Принимая величины прямых измерений за независимые переменные, найти полный дифференциал от полученного выражения.

4. Сложить все частные дифференциалы по абсолютной величине, заменив в них дифференциалы переменных соответствующими абсолютными ошибками прямых измерений.

Например, плотность тела цилиндрической формы вычисляется по формуле:

(16)

где m, D, h - измеряемые величины.

Получим формулу для расчета погрешностей.

1. Исходя из используемого оборудования, определяем абсолютные погрешности измерения массы, диаметра и высоты цилиндра (∆m, ∆D, ∆h соответственно).

2. Логарифмируем выражение (16):

3. Дифференцируем:

4. Заменяя дифференциал независимых переменных на абсолютные ошибки и складывая модули частных приращений, получаем:

5. Используя численные значения m, D, h, D, m, h , рассчитываем Е.

6. Вычисляем абсолютную ошибку

где r рассчитано по формуле (16).

Предлагаем самим убедиться, что в случае полого цилиндра или трубки с внутренним диаметром D 1 и внешним диаметром D 2

К расчету ошибки метода измерения (прямого или косвенного) приходится прибегать в случаях, когда многократные измерения либо невозможно провести в одних и тех же условиях, либо они занимают много времени.

Если определение погрешности измерения является принципиальной задачей, то обычно измерения проводят многократно и вычисляют и среднеарифметическую погрешность и погрешность метода (приборную погрешность). В окончательном результате указывают большую из них.

О точности вычислений

Ошибка результата определяется не только неточностями измерений но и неточностями вычислений. Вычисления необходимо проводить так, чтобы их ошибка была на порядок меньше ошибки результата измерений. Для этого вспомним правила математического действия с приближёнными числами.

Результаты измерений – приближённые числа. В приближённом числе все цифры должны быть верными. Последней верной цифрой приближённого числа считается такая цифра, ошибка в которой не превышает одной единицы её разряда. Все цифры от 1 до 9 и 0, если он стоит в середине или в конце числа, называются значащими. В числе 2330 - 4 значащих цифры, а в числе 6,1×10 2 – только две, в числе 0,0503 – три, так как нули слева от пятёрки незначащие. Запись числа 2,39 означает, что верны все знаки до второго после запятой, а запись в 1,2800 – что верно также и третий и четвёртый знаки. В числе 1,90 три значащих цифры и это значит, что при измерении мы учитывали не только единицы, но и десятые и сотые, а в числе 1,9 – только две значащих цифры и это значит, что мы учитывали целые и десятые и точность этого числа в 10 раз меньше.

Правила округления чисел

При округлении оставляют лишь верные знаки, остальные отбрасываются.

1. Округление достигается простым отбрасыванием цифр, если первая из отбрасываемых цифр меньше, чем 5.

2. Если первая из отбрасываемых цифр больше, чем 5, то последняя цифра увеличивается на единицу. Последняя цифра увеличивается также и в том случае, когда первая из отбрасываемых цифр 5, а за ней есть одна или несколько цифр, отличных от нуля.

Например, различные округления числа 35,856 будут: 35,9; 36.

3. Если отбрасываемая цифра 5, а за ней нет значащих цифр, то округление производится на ближайшее чётное число, то есть, последняя сохраняемая цифра остаётся неизменной, если она чётная и увеличивается на единицу, если она нечётная.

Например, 0,435 округляем до 0,44; 0,365 округляем до 0,36.

Допустим, что мы проводим серию из n измерений одной и той же величины х . Из-за наличия случайных ошибок отдельные значения х 1 , х 2 , х 3, х n неодинаковы, и в качестве наилучшего значения искомой величины выбирается среднее арифметическое , равное арифметической сумме всех измеренных значений, деленной на число измерений:

. (П.1)

где å - знак суммы, i - номер измерения, n - число измерений.

Итак, - значение, наиболее близкое к истинному. Истинного же значения никто не знает. Можно лишь рассчитать интервал Dх вблизи , в котором истинное значение может находиться с некоторой степенью вероятности р . Этот интервал называется доверительным интервалом . Вероятность, с которой истинное значение в него попадает, называется доверительной вероятностью, или коэффициентом надежности (так как знание доверительной вероятности позволяет оценить степь надежности полученного результата). При расчете доверительного интервала необходимая степень надежности задается заранее. Она определяется практическими потребностями (например, к деталям мотора самолета предъявляются более жесткие требования, чем к лодочному мотору). Очевидно, для получения большей надежности требуется увеличение числа измерений и их тщательности.

Благодаря тому, что случайные погрешности отдельных измерений подчиняются вероятностным закономерностям, методы математической статистики и теории вероятностей позволяют рассчитать среднюю квадратичную погрешность среднего арифметического значения сл. Запишем без доказательства формулу для расчета сл при малом числе измерений (n < 30).

Формулу называют формулой Стьюдента:

, (П.2)

где t n, p - коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности р .

Коэффициент Стьюдента находят по таблице, приведенной ниже, предварительно определив, исходя из практических потребностей (как было сказано выше), величины n и р .

При обработке результатов лабораторных работ достаточно провести 3-5 измерений, а доверительную вероятность принять равной0,68.

Но бывает так, что при многократных измерениях получаются одинаковые значения величины х . Например, 5 раз измерили диаметр проволоки и 5 раз получили одно и то же значение. Так вот, это вовсе не значит, что погрешности нет. Это значит только то, что случайная погрешность каждого измерения меньше точности прибора d, которую также называют приборной ,или инструментальной , погрешностью. Инструментальная погрешность прибора d определятся по классу точности прибора, указанному в его паспорте, либо указывается на самом приборе. А иногда принимается равной цене деления прибора (цена деления прибора - значение его самого маленького деления) либо половине цены деления (если на глаз приблизительно можно определить половину цены деления прибора).


Так как каждое из значений х i получено с погрешностью d, то полный доверительный интервал , или абсолютную погрешность измерения, рассчитывают по формуле:

. (П.3)

Заметим, что если в формуле (П.3) одна из величин хотя бы в 3 раза больше другой, то меньшей пренебрегают.

Абсолютная погрешность сама по себе не отражает качества проведенных измерений. Например, только по информации абсолютная погрешность равна 0,002 м² нельзя судить о том, сколь хорошо было проведено данное измерение. Представление о качестве проведенных измерений дает относительная погрешность e, равная отношению абсолютной погрешности к среднему значению измеряемой величины. Относительная погрешность показывает, какую долю составляет абсолютная погрешность от измеренного значения. Как правило, относительную погрешность выражают в процентах:

Рассмотрим пример. Пусть диаметр шара измеряется с помощью микрометра, инструментальная погрешность которого d = 0,01 мм. В результате трех измерений получились следующие значения диаметра:

d 1 = 2,42 мм, d 2 = 2,44 мм, d 3 = 2,48 мм.

По формуле (П.1) определяют среднее арифметическое значение диаметра шара

Затем по таблице коэффициентов Стьюдента находят, что для доверительной вероятности 0,68 при трех измерениях t n, p = 1,3. После чего по формуле (П.2) рассчитывают случайную погрешность измерения Dd сл

Так как полученная случайная погрешность всего в два раза превышает приборную погрешность, то при нахождении абсолютной погрешности измерения Dd по (П.3) следует учитывать и случайную погрешность, и погрешность прибора, т. е.

Мм » ±0,03 мм.

Погрешность округлили до сотых миллиметра, так как точность результата не может превышать точность измерительного прибора, которая в данном случае составляет 0,01 мм.

Итак, диаметр проволоки равен

мм.

Данная запись говорит о том, что истинное значение диаметра шара с вероятностью 68 % лежит в интервале (2,42 ¸ 2,48) мм.

Относительная погрешность e полученного значения согласно (П.4) составляет

%.

ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

В ФИЗИЧЕСКОМ ПРАКТИКУМЕ

Измерения и погрешности измерений

Физика - наука экспериментальная, это означает, что физические законы устанавливаются и проверяются путем накопления и сопоставления экспериментальных данных. Цель физического практикума заключается в том, чтобы студенты изучили на опыте основные физические явления, научились правильно измерять числовые значения физических величин и сопоставлять их с теоретическими формулами.

Все измерения можно разделить на два вида – прямые икосвенные .

При прямых измерениях значение искомой величины непосредственно получается по показаниям измерительного прибора. Так, например, длина измеряется линейкой, время по часам и т. д.

Если искомая физическая величина не может быть измерена непосредственно прибором, а посредством формулы выражается через измеряемые величины, то такие измерения называются косвенными .

Измерение любой величины не дает абсолютно точного значения этой величины. Каждое измерение всегда содержит некоторую погрешность (ошибку). Ошибкой называют разность между измеренным и истинным значением.

Ошибки принято делить на систематические и случайные .

Систематической называют ошибку, которая остается постоянной на протяжении всей серии измерений. Такие погрешности обусловлены несовершенством измерительного инструмента (например, смещением нуля прибора) или методом измерений и могут быть, в принципе, исключены из конечного результата введением соответствующей поправки.

К систематическим ошибкам относятся также погрешность измерительных приборов. Точность любого прибора ограничена и характеризуется его классом точности, который, как правило, обозначен на измерительной шкале.

Случайной называется ошибка, которая изменяется в разных опытах и может быть и положительной и отрицательной. Случайные ошибки обусловлены причинами, зависящими как от измерительного устройства, (трение, зазоры, и т. п..), так и от внешних условий (вибрации, колебания напряжения в сети и т.п.).

Случайные ошибки нельзя исключить опытным путем, но их влияние на результат можно уменьшить многократными измерениями.

ВЫЧИСЛЕНИЕ ПОГРЕШНОСТИ ПРИ ПРЯМЫХ ИЗМЕРЕНИЯХ

СРЕДНЕЕ ЗНАЧЕНИЕ И СРЕДНЯЯ АБСОЛЮТНАЯ ОШИБКА.

Предположим, что мы проводим серию измерений величины Х. Из-за наличия случайных ошибок, получаем n различных значений:

Х 1 , Х 2 , Х 3 … Х n

В качестве результата измерений обычно принимают среднее значение

Разность между средним значением и результатом i – го измерения назовем абсолютной ошибкой этого измерения

В качестве меры ошибки среднего значения можно принять среднее значение абсолютной ошибки отдельного измерения

(2)

Величина
называется средней арифметической (или средней абсолютной) ошибкой.

Тогда результат измерений следует записать в виде

(3)

Для характеристики точности измерений служит относительная ошибка, которую принято выражать в процентах

(4)

СРЕДНЯЯ КВАДРАТИЧНАЯ ОШИБКА.

При ответственных измерениях, когда необходимо знать надежность полученных результатов, используется средняя квадратичная ошибка (или стандартное отклонение), которая определяется формулой

(5)

Величина  характеризует отклонение отдельного единичного измерения от истинного значения.

Если мы вычислили по n измерениям среднее значение по формуле (2), то это значение будет более точным, то есть будет меньше отличаться от истинного, чем каждое отдельное измерение. Средняя квадратичная ошибка среднего значения
равна

(6)

где  - среднеквадратичная ошибка каждого отдельного измерения, n – число измерений.

Таким образом, увеличивая число опытов, можно уменьшить случайную ошибку в величине среднего значения.

В настоящее время результаты научных и технических измерений принято представлять в виде

(7)

Как показывает теория, при такой записи мы знаем надежность полученного результата, а именно, что истинная величина Х с вероятностью 68% отличается отне более, чем на
.

При использовании же средней арифметической (абсолютной) ошибки (формула 2) о надежности результата ничего сказать нельзя. Некоторое представление о точности проведенных измерений в этом случае дает относительная ошибка (формула 4).

При выполнении лабораторных работ студенты могут использовать как среднюю абсолютную ошибку, так и среднюю квадратичную. Какую из них применять указывается непосредственно в каждой конкретной работе (или указывается преподавателем).

Обычно если число измерений не превышает 3 – 5, то можно использовать среднюю абсолютную ошибку. Если число измерений порядка 10 и более, то следует использовать более корректную оценку с помощью средней квадратичной ошибки среднего (формулы 5 и 6).

УЧЕТ СИСТЕМАТИЧЕСКИХ ОШИБОК.

Увеличением числа измерений можно уменьшить только случайные ошибки опыта, но не систематические.

Максимальное значение систематической ошибки обычно указывается на приборе или в его паспорте. Для измерений с помощью обычной металлической линейки систематическая ошибка составляет не менее 0,5 мм; для измерений штангенциркулем –

0,1 – 0,05 мм; микрометром – 0,01 мм.

Часто в качестве систематической ошибки берется половина цены деления прибора.

На шкалах электроизмерительных приборов указывается класс точности. Зная класс точности К, можно вычислить систематическую ошибку прибора ∆Х по формуле

где К – класс точности прибора, Х пр – предельное значение величины, которое может быть измерено по шкале прибора.

Так, амперметр класса 0,5 со шкалой до 5А измеряет ток с ошибкой не более

Погрешность цифрового прибора равна единице наименьшего индицируемого разряда.

Среднее значение полной погрешности складывается из случайной исистематической погрешностей.

Ответ с учетом систематических и случайных ошибок записывается в виде

ПОГРЕШНОСТИ КОСВЕННЫХ ИЗМЕРЕНИЙ

В физических экспериментах чаще бывает так, что искомая физическая величина сама на опыте измерена быть не может, а является функцией других величин, измеряемых непосредственно. Например, чтобы определить объём цилиндра, надо измерить диаметр D и высоту h , а затем вычислить объем по формуле

Величины D иh будут измерены с некоторой ошибкой.Следовательно, вычисленная величина V получится также с некоторой ошибкой. Надо уметь выражать погрешность вычисленной величины через погрешности измеренных величин.

Как и при прямых измерениях можно вычислять среднюю абсолютную (среднюю арифметическую) ошибку или среднюю квадратичную ошибку.

Общие правила вычисления ошибок для обоих случаев выводятся с помощью дифференциального исчисления.

Пусть искомая величина φ является функцией нескольких переменных Х, У, Z

φ(Х, У, Z …).

Путем прямых измерений мы можем найти величины
, а также оценить их средние абсолютные ошибки
… или средние квадратичные ошибки Х,  У,  Z …

Тогда средняя арифметическая погрешность  вычисляется по формуле

где
- частные производные от φ по Х, У, Z . Они вычисляются для средних значений

Средняя квадратичная погрешность вычисляется по формуле

Пример. Выведем формулы погрешности для вычисления объёма цилиндра.

а) Средняя арифметическая погрешность.

Величины D и h измеряются соответственно с ошибкой D и h.

б) Средняя квадратичная погрешность.

Величины D и h измеряются соответственно с ошибкой  D ,  h .

Погрешность величины объёма будет равна

Если формула представляет выражение удобное для логарифмирования (то есть произведение, дробь, степень), то удобнее вначале вычислять относительную погрешность. Для этого (в случае средней арифметической погрешности) надо проделать следующее.

1. Прологарифмировать выражение.

2. Продифференцировать его.

3. Объединить все члены с одинаковым дифференциалом и вынести его за скобки.

4. Взять выражение перед различными дифференциалами по модулю.

5. Заменить значки дифференциалов d на значки абсолютной погрешности .

В итоге получится формула для относительной погрешности

Затем, зная , можно вычислить абсолютную погрешность 

 = 

Пример.

Аналогично можно записать относительную среднюю квадратичную погрешность

Правила представления результатов измерения следующие:

    погрешность должна округляться до одной значащей цифры:

правильно  = 0,04,

неправильно -  = 0,0382;

    последняя значащая цифра результата должна быть того же порядка величины, что и погрешность:

правильно  = 9,830,03,

неправильно -  = 9,8260,03;

    если результат имеет очень большую или очень малую величину, необходимо использовать показательную форму записи - одну и ту же для результата и его погрешности, причем запятая десятичной дроби должна следовать за первой значащей цифрой результата:

правильно -  = (5,270,03)10 -5 ,

неправильно -  = 0,00005270,0000003,

 = 5,2710 -5 0,0000003,

 = = 0,0000527310 -7 ,

 = (5273)10 -7 ,

 = (0,5270,003) 10 -4 .

    Если результат имеет размерность, ее необходимо указать:

правильно – g=(9,820,02) м/c 2 ,

неправильно – g=(9,820,02).

Правила построения графиков

1. Графики строятся на миллиметровой бумаге.

2. Перед построением графика необходимо четко определить, какая переменная величина является аргументом, а какая функцией. Значения аргумента откладываются на оси абсцисс (ось х ), значения функции - на оси ординат (ось у ).

3. Из экспериментальных данных определить пределы изменения аргумента и функции.

4. Указать физические величины, откладываемые на координатных осях, и обозначить единицы величин.

5. Нанести на график экспериментальные точки, обозначив их (крестиком, кружочком, жирной точкой).

6. Провести через экспериментальные точки плавную кривую (прямую) так, чтобы эти точки приблизительно в равном количестве располагались по обе стороны от кривой.



Поделиться: