Влияние хищничества на популяцию жертвы. Основы популяционной экологии Какие факторы ограничивают воздействие хищника на жертву


Нападения хищников часто направлены на наиболее слабых жертв. - Воздействие хищников часто компенсируется снижением внутривидовой конкуренции, однако компенсация обычно бывает не полной. - Уменьшение воздействия одного типа хищничества приводит к компенсирующему возрастанию другого типа.
Если известно, что хищничество отрицательно влияет на отдельных особей жертвы (жертвами могут быть как животные, так и растения), то можно ожидать, что и на.популяцию жертвы в целом хищничество будет влиять отрицательно. Однако на уровне популяции эти эффекты не всегда легко предсказать по следующим важным причинам: I) уничтоженные (или поврежденные) особи не всегда представляют собой случайную выборку из всей популяции; 2) .избежавшие гибели особи часто проявляют реакции, которые!компенсируют потери популяции.
Эррингтон (Errington, 1946) в течение длительного времени тщательно изучал популяции ондатры (Ondatra zibethica) на севере центральной части США. Он проводил учеты, регистрировал гибель и перемещения особей, следил за судьбой отдельных потомков и особенно тщательно контролировал хищничество со стороны американской норки (Mustela vison). Эррингтон обнаружил, что на взрослых ондатр, занимавших прочное положение на своем индивидуальном участке, норки, как правило, не нападали; но кочующие особи, которые не имели своего участка, или особи, испытывавшие недостаток в воде или пострадавшие от внутривидовых схваток, очень часто уничтожались хищником. Таким образом, убитыми оказывались те ондатры, которые (имели меньше всего шансов на выживание и на успех в размножении. Сходные результаты были получены при изучении хищничества на других позвоночных. Наиболее вероятными жертвами оказывались молодые, бездомные, больные и одряхлевшие животные. Следовательно влияние хищничества на популяцию жертвы гораздо слабее, чем можно было ожидать.
Сходные примеры могут быть приведены и для растительных популяций. В Австралии гибель зрелых эвкалиптов, вызванная уничтожением листьев пилильщиками (Perga affinis affinis), почти полностью ограничивалась ослабленными деревьями на бедных почвах или деревьями, пострадавшими от повреждения корней или от изменившегося вследствие культивации дренажа (Сагпе, 1969).
Воздействие хищничества также может быть ограничено компенсирующими реакциями выживших особей - чаще всего это происходит благодаря снижению внутривидовой конкуренции. Так, в эксперименте, в ходе которого было отстрелено

илп
Рис. 8.5. Чистая продуктивность клевера подземного представляет собой колоколообразную функцию индекса листовой поверхности (ИЛП). С ростом освещенности (Дж*см-2-сут~1) оптимальное значение ИЛП увеличивается, поскольку свет проникает глубже в крону, и выше точки компенсации оказывается все больше листьев. (Из Crawley, 1983, по Black, 1964.)

большое количество вяхирей (Columba palumbus), отстрел не привел к увеличению общего уровня зимней смертности, а прекращение охоты ’He вызвало роста "численности голубей (Murton et al., 1974). Это произошло потому, что численность выживших голубей в конечном счете определялась не числом отстреленных особей, а доступностью корма и, кроме того, после снижения плотности популяции в результате отстрела снизился уровень внутривидовой конкуренции и естественной смертности, а приток птиц-иммигрантов увеличился, поскольку они получили доступ к неиспользованным пищевым ресурсам. (
В самом деле, всякий раз, когда плотность популяции достаточно высока, вследствие чего происходит внутривидовая конкуренция, воздействие хищников на популяцию будет компенсировано последующим снижением внутривидовой конкуренции. Этот эффект отчетливо прослеживается при анализе колоколообразных кривых зависимости чистого пополнения или чистой продуктивности от плотности, обсуждявшихся в разд. 6.5. Если число размножающихся особей невелико, то величина чистого пополнения низка, как низка и чистая продуктивность растений после их частичной дефолиации (низкое значение индекса листовой поверхности). Однако величина чистого пополнения также низка при повышенной скученности особей; а продуктивность растений низка там, где индекс листовой поверхности высок и велика роль затенения (рис. 8.5). Поэтому, если хищник или растительноядный организ-м эксплуатирует популяцию, плотность которой соответствует правой части кривой, то плотность этой популяции падает, а "чистое пополнение или чистая продуктивность возрастает (рис. 8.5). Скорость восстановления популяции при этом увеличивается.
Вероятно, этот эффект наиболее выражен в популяциях растений (особенно травянистых), где компенсация идет не только за счет,выживших особей, iho и за счет уцелевших частей растений. Таким образом, даже если дефолиация оказывает губительное воздействие lHa отдельные побеги или даже на целые растения, это может 1не иметь серьезных,последствий для урожая в целом. Действительно, если потеря листьев приводит к увеличению чистой продуктивности популяции, то при этом количество ассимилятов, доступных для образования и созревания семян, -может возрасти. Отмечалось, что выедание посевов пшеницы, ржи и овса осенью в дальнейшем может способствовать повышенному образованию семян"(Sprague, 1954).
Однако далеко не всегда компенсация безупречна. Когда из экспериментальной популяции ежедневно удаляли 75% появляющихся взрослых особей падальной мухи (Lucilia cupfina)у численность популяции снизилась на 40%, хотя некоторая компенсация все же происходила (Nicholson, 1954b). Точно так же, когда в результате удаления листьев индекс листовой поверхности в популяции клевера подземного снизился до 4,5 (левая ветвь кривой на рис. 8.6), произошло резкое снижение скорости образования листьев. Следовательно, влияние хищничества, как правило, приводит ik "компенсирующему ослаблению внутривидовой конкуренции. Ho столь же очевидно и то, что роль механизмов компенсации ограниченна (особенно в популяциях растений при низ-кой плотности). Эти проблемы будут подробнее рассматриваться в разд. 10.8 при разборе вопроса, касающегося получения урожая. Пока же следует отметить, что человек, собирая повторные урожаи, полагается на компенсирующие возможности популяций; однако ограниченность этих возможностей может привести чрезмерно эксплуатируемую популяцию 1K черте (или за ее пределы), за.которой популяция вымирает.
Компенсация в пределах популяции не всегда связана со снижением внутривидовой конкуренции. Уменьшение воздействия хищничества одного типа может привести к зависимому от плотности компенсирующему возрастанию другого типа. Например, в табл. 8.1 приведены результаты эксперимента, в ходе которого следили за судьбой семян дугласии (Pseudotsuga теп- ziesii), высаженных на открытом участке и на участке, огороженном от позвоночных животных (Lawrence, Rediske, 1962). Как правило, защитные экраны эффективно действовали в тех случаях, "когда защищали посадки от птиц и грызунов. Однако при этом увеличивалось отрицательное воздействие насекомых и особенно грибов на семена и проростки; в целом выживаемость изменилась сравнительно мало. Еще раз подчеркнем, что компенсирующие явления уменьшают, но не уничтожают эффекты хищничества.

В биологической литературе существует огромное число работ, в которых эти системы либо наблюдаются в природе, либо моделируются на «модельных» популяциях в лабораторных условиях. Однако их результаты зачастую противоречат друг другу: в одних экспериментах колебания наблюдаются, в других их нет; либо система достаточно быстро разрушается (гибнет хищник, а жертва остается, или гибнет жертва, а вслед за ней и хищник); либо хищник и жертва достаточно долго сосуществуют. По-видимому, все не так просто в этой весьма простой экологической системе. Естественно возникает вопрос: при каких же условиях это сообщество устойчиво, какие механизмы обеспечивают эту устойчивость? В этой главе, используя математические модели сообществ хищник - жертва, мы постараемся ответить на этот вопрос.

Активно обсуждается и еще одна проблема, которую коротко можно сформулировать так: «Может ли хищник регулировать численность жертвы?» Естественно, что в популяции жертвы (в отсутствие хищника) существуют собственные внутренние регулирующие механизмы (например, внутривидовая конкуренция или эпизоотии), ограничивающие рост ее численности.

Но в этом случае, если бы ограничивающие численность факторы не действовали (или оказывали влияние при достаточно больших численностях) и популяция жертвы в отсутствие хищника росла бы экпоненциально, приводит ли воздействие хищника к стабилизации всей системы в целом? Остаются ли ограниченными численности обоих видов, и не вымирает ли один из них или оба? Ответы на эти вопросы и составляют решение проблемы «может ли хищник регулировать численность жертвы».

Наконец, последний вопрос: «Приведут ли случайные возмущения среды к развалу системы хищник - жертва или оба будут сохраняться?» - рассматривается в рамках анализа уравнений системы хищник - жертва со случайными возмущениями параметров.


Хищничество

Часто термином «хищничество» определяют всякое выедание одних организмов другими. В природе этот тип биотических взаимоотношений широко распространен. От их исхода зависит не только судьба отдельного хищника или его жертвы, но и некоторые важные свойства таких крупных экологических объектов, как биотические сообщества и экосистемы.

Значение хищничества можно понять лишь рассматривая это явление на уровне популяций. Длительная связь между популяциями хищника и жертвы порождает их взаимозависимость, которая действует подобно регулятору, предотвращая слишком резкие колебания численности или препятствуя накоплению в популяциях ослабленных или больных особей. В ряде случаев хищничество может существенно ослаблять отрицательные последствия межвидовой конкуренции, повышать устойчивость и разнообразие видов в сообществах. Установлено, что при длительном совместном существовании взаимодействующих видов животных и растений их изменения протекают согласованно-то есть эволюция одного вида частично зависит от эволюции другого. Такая согласованность в процессах совместного развития организмов разных видов называется коэволюцией.

Рис.1. Хищник, нагоняющий свою жертву

Адаптация хищников и их жертв в совместном эволюционном развитии приводит к тому, что отрицательные влияния одного из них на другой становятся слабее. Применительно к популяции хищника и жертвы это означает, что естественный отбор будет действовать в противоположных направлениях. У хищника он будет направлен на увеличение эффективности поиска, ловли и поедания жертвы. А у жертвы – благоприятствовать возникновению таких приспособлений, которые позволяют особям избежать их обнаружения, поимки и уничтожения хищником.

По мере того как жертва приобретает опыт избегать хищника, последний вырабатывает более эффективные механизмы ее поимки. В действиях многих хищников в природе как бы присутствует расчетливость. Хищнику, например, «невыгодно» полное уничтожение жертвы, и, как правило, этого не случается. Хищник уничтожает в первую очередь тех особей, которые медленно растут и слабо размножаются, но оставляет особей быстрорастущих, плодовитых, выносливых.

Хищничество требует больших затрат энергии. Во время охоты хищники нередко подвергаются опасностям. Например, крупные кошки при нападении часто гибнут, например, при столкновении со слонами или кабанами. Иногда они гибнут от столкновения с другими хищниками в ходе межвидовой борьбы за добычу. Пищевые отношения, в том числе хищничество, могут являться причиной регулярных периодических колебаний численности популяций каждого из взаимодействующих видов.

Связь хищника и жертвы

Периодические колебания численности хищника и его жертвы подтверждены экспериментально. Инфузорий двух видов помещали в общую пробирку. Хищные инфузории довольно быстро уничтожали своих жертв, а затем сами погибали от голода. Если в пробирку добавляли целлюлозу (вещество, замедляющее передвижение хищника и жертвы), в численности и того и другого вида начинали происходить циклические колебания. На первых порах хищник подавлял рост численности мирного вида, но впоследствии сам начинал испытывать недостаток пищевого ресурса. В результате происходило снижение численности хищника, а следовательно – ослабление его давления на популяцию жертвы. Через некоторое время рост численности жертвы возобновлялся; ее популяция увеличивалась. Таким образом, вновь возникали благоприятные условия для оставшихся хищных особей, которые реагировали на это увеличением скорости размножения. Цикл повторялся. Последующее изучение взаимоотношений в системе «хищник – жертва» показало, что устойчивость существования как популяции хищника, так и популяции жертвы значительно повышается, когда в каждой из популяций действуют механизмы самоограничения роста численности (например, внутривидовая конкуренция).

Каково же значение популяций хищников в природе? Убивая более слабых, хищник действует подобно селекционеру, ведущему отбор семян, дающих наилучшие всходы. Влияние популяции хищника приводит к тому, что обновление популяции жертвы происходит быстрее, так как быстрый рост ведет к более раннему участию особей в размножении. Одновременно увеличивается потребление жертвами их пищи (быстрый рост может происходить лишь при более интенсивном потреблении пищи). Количество энергии, заключенной в пище и проходящей через популяцию быстрорастущих организмов, также возрастает. Таким образом, воздействие хищников увеличивает поток энергии в экосистеме.

В результате избирательного уничтожения хищниками животных с низкой способностью добывать себе корм (медлительных, хилых, больных) выживают сильные и выносливые. Это относится ко всему животному миру: хищники улучшают (в качественном отношении) популяции жертв. Разумеется, в животноводческих районах необходимо регулировать численность хищников, так как последние могут причинять вред домашнему скоту. Однако в районах, недоступных для охоты, хищники должны быть сохранены для пользы как популяций жертв, так и взаимодействующих с ними растительных сообществ.


Рис.2. Мокрица, пожирающая язык (лат. Cymothoa exigua)

Популяционная динамика – один из разделов математического моделирования. Интересен он тем, что имеет конкретные приложения в биологии, экологии, демографии, экономике. В данном разделе имеется несколько базовых моделей, одна из которых – модель «Хищник - жертва» – рассматривается в данной статье.

Первым примером модели в математической экологии стала модель, предложенная В.Вольтеррой. Именно он впервые рассмотрел модель взаимоотношения между хищником и жертвой.

Рассмотрим постановку задачи. Пусть имеется два вида животных, один из которых пожирает другой (хищники и жертвы). При этом принимаются следующие предположения: пищевые ресурсы жертвы не ограничены и в связи с этим в отсутствии хищника популяция жертвы возрастает по экспоненциальному закону, в то время как хищники, отделенные от своих жертв, постепенно умирают с голоду так же по экспоненциальному закону. Как только хищники и жертвы начинают обитать в непосредственной близости друг от друга, изменения численности их популяций становятся взаимосвязанными. В этом случае, очевидно, относительный прирост численности жертв будет зависеть от размеров популяции хищников, и наоборот.

В данной модели считается, что все хищники (и все жертвы) находятся в одинаковых условиях. При этом пищевые ресурсы жертв неограниченны, а хищники питаются исключительно жертвами. Обе популяции живут на ограниченной территории и не взаимодействуют с любыми другими популяциями, также отсутствуют любые другие факторы, способные повлиять на численность популяций.

Сама математическая модель «хищник – жертва» состоит из пары дифференциальных уравнений, которые описывают динамику популяций хищников и жертв в её простейшем случае, когда имеется одна популяция хищников и одна - жертв. Модель характеризуется колебаниями в размерах обеих популяций, причём пик количества хищников немного отстаёт от пика количества жертв. С данной моделью можно ознакомиться во многих трудах по популяционной динамике или математическому моделированию. Она достаточно широко освещена и проанализирована математическими методами. Однако формулы не всегда могут дать очевидное представление о происходящем процессе.

Интересно узнать, как именно в данной модели зависит динамика популяций от начальных параметров и насколько это соответствует действительности и здравому смыслу, причём увидеть это графически, не прибегая к сложным расчётам. Для этой цели на основе модели Вольтерра была создана программа в среде Mathcad14.

Для начала проверим модель на соответствие реальным условиям. Для этого рассмотрим вырожденные случаи, когда в данных условиях обитает только одна из популяций. Теоретически было показано, что при отсутствии хищников популяция жертвы неограниченно возрастает во времени, а популяция хищника в отсутствии жертвы вымирает, что вообще говоря соответствует модели и реальной ситуации (при указанной постановке задачи).

Полученные результаты отражают теоретические: хищники постепенно вымирают(Рис.1), а численность жертвы неограниченно возрастает(Рис.2).

Рис.1 Зависимость числа хищников от времени при отсутствии жертвы

Рис.2 Зависимость числа жертв от времени при отсутствии хищников

Как видно, в данных случаях система соответствует математической модели.

Рассмотрим, как ведёт себя система при различных начальных параметрах. Пусть имеются две популяции – львы и антилопы – хищники и жертвы соответственно, и заданы начальные показатели. Тогда получаем следующие результаты(Рис.3):

Таблица 1. Коэффициенты колебательного режима системы

Рис.3 Система при значении параметров из Таблицы 1

Проанализируем полученные данные, исходя из графиков. При первоначальном возрастании популяции антилоп наблюдается прирост числа хищников. Заметим, что пик возрастания популяции хищников наблюдается позже, на спаде популяции жертв, что вполне соответствует реальным представлениям и математической модели. Действительно, рост числа антилоп означает увеличение пищевых ресурсов для львов, что влечёт за собой рост их численности. Далее активное поедание львами антилоп ведёт к стремительному уменьшению численности жертв, что неудивительно, учитывая аппетит хищника, а точнее частоту поедания хищниками жертв. Постепенное снижение численности хищника приводит к ситуации, когда популяция жертвы оказывается в благоприятных для роста условиях. Далее ситуация повторяется с определённым периодом. Делаем вывод, что данные условия не подходят для гармоничного развития особей, так как влекут резкие спады популяции жертв и резкие возрастания обеих популяций.

Положим теперь начальную численность хищника равную 200 особей при сохранении остальных параметров(Рис.4).

Таблица 2. Коэффициенты колебательного режима системы

Рис.4 Система при значении параметров из Таблицы 2

Теперь колебания системы происходят более естественно. При данных предположениях система существует вполне гармонично, отсутствуют резкие возрастания и убывания количества численности в обеих популяциях. Делаем вывод, что при данных параметрах обе популяции развиваются достаточно равномерно для совместного обитания на одной территории.

Зададим начальную численность хищника равную 100 особей, численность жертв 200 при сохранении остальных параметров(Рис.5).

Таблица 3. Коэффициенты колебательного режима системы

Рис.5 Система при значении параметров из Таблицы 3

В данном случае ситуация близка к первой рассмотренной ситуации. Заметим, что при взаимном увеличении популяций переходы от возрастания к убыванию популяции жертвы стали более плавными, а популяция хищника сохраняется в отсутствии жертв при более высоком численном значении. Делаем вывод, что при близком отношении одной популяции к другой их взаимодействие происходит более гармонично, если конкретные начальные численности популяций достаточно большие.

Рассмотрим изменение других параметров системы. Пусть начальные численности соответствуют второму случаю. Увеличим коэффициент размножения жертв (Рис.6).

Таблица 4. Коэффициенты колебательного режима системы


Рис.6 Система при значении параметров из Таблицы 4

Сравним данный результат с результатом, полученным во втором случае. В этом случае наблюдается более быстрый прирост жертвы. При этом и хищник, и жертва ведут себя так, как в первом случае, что объяснялось невысокой численностью популяций. При таком взаимодействии обе популяции достигают пика со значениями, намного большими, чем во втором случае.

Теперь увеличим коэффициент прироста хищников (Рис.7).

Таблица 5. Коэффициенты колебательного режима системы


Рис.7 Система при значении параметров из Таблицы 5

Сравним результаты аналогично. В этом случае общая характеристика системы остаётся прежней, за исключением изменения периода. Как и следовало ожидать, период стал меньше, что объясняется быстрым уменьшением популяции хищника в отсутствии жертв.

И, наконец, изменим коэффициент межвидового взаимодействия. Для начала увеличим частоту поедания хищниками жертв:

Таблица 6. Коэффициенты колебательного режима системы


Рис.8 Система при значении параметров из Таблицы 6

Так как хищник поедают жертву чаще, то максимум численности его популяции увеличился по сравнению со вторым случаем, а также уменьшилась разность между максимальным и минимальным значениями численности популяций. Период колебаний системы остался прежним.

И теперь уменьшим частоту поедания хищниками жертв:

Таблица 7. Коэффициенты колебательного режима системы

Рис.9 Система при значении параметров из Таблицы 7

Теперь хищник поедают жертву реже, максимум численности его популяции уменьшился по сравнению со вторым случаем, а максимум численности популяции жертвы увеличился, причём в 10 раз. Отсюда следует, что при данных условиях популяция жертвы имеет большую свободу в смысле размножения, ведь хищнику хватает меньшей массы, чтобы насытиться. Также уменьшилась разность между максимальным и минимальным значениями численности популяций.

При попытке моделирования сложных процессов в природе или обществе, так или иначе, возникает вопрос о корректности модели. Естественно, что при моделировании происходит упрощение процесса, пренебрежение некоторыми второстепенными деталями. С другой стороны, существует опасность упростить модель слишком сильно, выкинув при этом вместе с несущественными важные черты явления. Для того чтобы избежать данной ситуации, необходимо перед моделированием изучить предметную область, в которой используется данная модель, исследовать все её характеристики и параметры, а главное, выделить те черты, которые являются наиболее значимыми. Процесс должен иметь естественное описание, интуитивно понятное, совпадающее в основных моментах с теоретической моделью.

Рассмотренная в данной работе модель обладает рядом существенных недостатков. Например, предположение о неограниченных ресурсах для жертвы, отсутствие сторонних факторов, влияющих на смертность обоих видов и т.д. Все эти предположения не отражают реальную ситуацию. Однако, несмотря на все недостатки, модель получила широкое распространение во многих областях, даже далёких от экологии. Это можно объяснить тем, что система «хищник-жертва» даёт общее представление именно о взаимодействии видов. Взаимодействие с окружающей средой и прочими факторами можно описать другими моделями и анализировать их в совокупности.

Взаимоотношения типа «хищник-жертва» - существенная черта различных видов жизнедеятельности, в которых происходит столкновение двух взаимодействующих между собой сторон. Данная модель имеет место не только в экологии, но и в экономике, политике и других сферах деятельности. Например, одно из направлений, касающихся экономики, это анализ рынка труда, с учётом имеющихся потенциальных работников и вакантных рабочих мест. Данная тема была бы интересным продолжением работы над моделью «хищник-жертва».

2014-06-02

Основные понятия и термины: хищник, хищничество, уравнения хищничества Лотки — Вольтерры, численное реакция хищника, динамика системы «хищник — жертва».
Хищничество — это односторонняя связь между хищником и жертвой, с которого хищник получает выгоду от совместного существования с жертвой, что чувствует на себе неблагоприятное воздействие. Эта особенно жестокая форма межвидовых взаимоотношений является одним из важных факторов, влияющих на рост популяции.

В связи с хищническим образом жизни у хищников производились различные формы приспособления к вылов и ловли жертв. К ним относятся: лучшее развитие органов чувств, быстрые и точные нападение на удары, ловкость и быстрый бег, молниеносная реакция, подкрадывания и разнообразные конкретные, относительно среды жизни, адаптивные признаки вида (длинные липкие языки, прикрепленные передним концом, точный прицел ним в лягушек, хамелеонов, ящериц; загнутые ядовитые зубы у гадюк; паутина и ядовитые железы у пауков и др.) (рис. 9.7).

Ожидая добычу, паук обычно прячется вблизи сетки в потайном гнезде, сделанном из паутины. От центра сетки к гнезду натянуто сигнальную нить. Когда муха, маленькая бабочка или другое насекомое попадает в сетку и начинает в ней барахтаться, сигнальная нить колеблется. По этим знаком паук выходит из своего укрытия и набрасывается на добычу, густо опутывая ее паутиной. Он устромлюе в нее коготки верхних челюстей и впрыскивает внутрь тела яд. Затем паук на время оставляет добычу и прячется обратно в свое сокровенное гнездо.

Интересным примером адаптации хищника и жертвы есть скворцы и сокол — сапсан. Сапсан, которому присущ очень острое зрение, ловит добычу в воздухе. Сложив крылья, он камнем падает вниз на жертву — птичку, летящую ниже, развивая при этом скорость до 300 км / час. Скворцы, заметив сапсана, чтобы избежать его атаки, моментально сбиваются в кучу. Сапсан не решается нападать на них в таком состоянии.

Характерной чертой хищников является широкий спектр питания. Специализация, то есть питания определенным видом, ставила их в определенную зависимость от численности этого вида. Поэтому большинство хищных видов способна переключаться с одной добычи на другую, что является в настоящее время доступной. Эта способность является одним из необходимых экологических приспособлений в жизни хищника.

Жертвам тоже свойственны разные способы пассивной и активной защиты от хищников. При пассивном способе защиты развиваются защитная окраска, твердые панцири, шипы, умение находить безопасные места. Активный способ защиты обусловлен развитием у жертв органов чувств, скорости бега, обманчивой поведения сопровождается совершенствованием нервной системы.
Функционирования сложной системы » хищник -жертва » методом моделирования исследовали экологи Лотка и Вольтерра.

Черным указано чистый рост численности жертвы, а белым — ее сокращение.
А — неэффективны хищники, несущественно уменьшают численность жертвы; ее популяция остается вблизи уровня равновесия (точка с);
Б — рост эффективности хищников при низкой плотности жертвы может привести к регулированию ее сбоку хищника (точка а);
В — если численность жертвы ограничена емкостью среды, то хищники могут эффективно регулировать популяцию жертвы и точка равновесия исчезает;
Г — когда популяция жертвы выедается полностью, точка равновесия отсутствует.
При низкой плотности хищника численность жертвы растет, а при высокой — уменьшается. Закономерный характер такого влияния, предусмотрен моделированием этих процессов в лабораторных условиях, в природе нарушается под действием различных факторов среды. Если, например, сильная засуха или морозы или инфекционная болезнь значительно уменьшат популяцию хищника и ее численность долгое время будет низкой, то независимо от того, будет ли она восстанавливаться, произойдет рост численности жертвы. Эта ситуация часто случается в сельском хозяйстве, когда вредитель (насекомые, мышевидные грызуны) внезапно дает угрожающий вспышка численности. После такой вспышки хищники (птицы или другие) не могут регулировать популяцию вредителя, так и используют пестициды, способные резко снизить численность вредителей и восстановить снова регуляторное воздействие хищников. Однако, неэффективны хищники не могут регулировать популяции жертвы при низкой ее плотности так несущественно уменьшают численность жертвы, оставляя численность популяции около уровня равновесия, определяется имеющимися в среде ресурсами.
Стабилизации отношений хищник -жертва способствует неэффективность хищника или бегство жертвы, наличие на территории других кормовых ресурсов, а также определенная лимитирующий действие факторов среды (рис. 9.9).
Реакция хищника на рост численности популяции жертвы увеличением своей численности за счет рождаемости или иммиграции (поступления) новых особей из других территорий называется численным реакцией.

Функциональной реакцией называют зависимость скорости поедания жертвы отдельной особью хищника от плотности популяции жертвы. Функциональная реакция многих хищников растет медленнее при более низких численности жертвы, чем при высоких.
Считают, что двустороннее взаимодействие хищник -жертва, которая характеризуется замедлением реакции хищника на увеличение численности жертвы, является нестабильной. Ограничивая рост популяции части видов, хищники играют роль регуляторов в группировке и тем самым способствуют пополнению его другими видами.

На основе наблюдений эколог Р.Уиттекер пришел к выводу, что:
1. Растение -жертва выживает, если находит укрытие от хищника. Для подтверждения этого он приводит пример со зверобоем обычным (Hypericum perforatum), который был завезен из Европы в западные штаты США. Он ядовит для скота, поэтому не поедалось ней и стал главным бурьяном пастбищ. Вместе с этим сорняком был завезен из Европы жук (Chrysolina quadrigemina), который питается им. Он тоже так быстро размножился, фактически истребил зверобой. Тот остался под покровом леса, в тени, где стал недоступным. Вследствие этого сократилась и популяция жука.

2. Относительная стабильность растения поддерживается хищником, который предотвращает чрезмерное разрастание ее на пастбище.

3. Современное распределение растений приводит хищник, а не устойчивость растения к условиям среды.



Поделиться: