Оптическая локация. Лазерная локация луны

Перспективность лазерных систем локации определяется большой шириной оптического диапазона (10 13 -10 15 Гц), в десятки раз превышающей ширину всего освоенного радиодиапазона, и высоким значением частоты оптической несущей. Благодаря этому можно формировать весьма узкие диаграммы излучения и использовать широкие спектры модулированных сигналов.

Поскольку в оптическом диапазоне частота колебаний примерно на 4 порядка выше, чем в СВЧ диапазоне, плотность потока электромагнитной энергии, пропорциональная телесному углу излучения, на заданном расстоянии и при заданных размерах «антенны» и мощности передатчика оказывается примерно в 10 раз выше, чем на СВЧ (при отсутствии поглощения на трассе). Поэтому, несмотря на принципиально худшую чувствительность оптических приемников (мощность порогового сигнала примерно пропорциональна частоте), мощность передатчика, необходимая для ведения разведки примерно на одинаковых расстояниях, может оказаться намного меньшей, чем на СВЧ. Однако указанные преимущества реализуются при локации в свободном пространстве (например, космическом). Наличие поглощения и рассеяния оптических волн в атмосфере при определенных условиях может резко уменьшить дальность слежения за целями.

Принципы построения и структурные схемы как аналоговых, так и дискретных приемных устройств оптической локации такие же, как и в радиодиапазоне.

Высокое значение несущей частоты позволяет использовать широкополосные зондирующие сигналы и, следовательно, обеспечить точное измерение дальности до цели и высокую разрешающую способность по дальности. Обеспечивается также высокая угловая разрешающая способность и хорошая точность определения угловых координат даже при малых размерах антенных устройств. Путем регистрации доплеровского сдвига частоты можно измерять не только большие и средние, но и малые значения скоростей сближения.

Как уже отмечалось выше, приемные устройства оптического диапазона имеют худшую пороговую чувствительность (энергия фотона в оптическом диапазоне велика и при приеме сигналов проявляются квантовые эффекты), а передающие устройства – более низкий к.п.д. (из-за рассеяния и поглощения в атмосфере). Эти особенности определили рациональные области использования оптической локации. Локационные системы оптического диапазона целесообразны в тех случаях, когда требования высокой разрешающей способности и точности определения координат доминируют и за счет априорной информации о местоположении цели путем высокой пространственной концентрации энергии зондирующего сигнала имеется возможность компенсировать худшие показатели приемных и передающих устройств. Так же отмечалось выше, что характеристики локационных систем оптического диапазона зависят от метеоусловий.



В качестве примера целесообразного использования систем оптического диапазона указывают на измерение дальности до различных объектов, обнаруживаемых визуально либо с помощью телевизионных или инфракрасных устройств разведки.

Вследствие высокой аппаратурной разрешающей способности оптических локаторов (обусловленной узкими диаграммами направленности антенн и малой длительностью зондирующих импульсов), как правило, определение координат производят с точностью до размеров объема разрешения, не измеряя положение цели внутри него. В этом случае энергетический потенциал системы определяет режим обнаружения.

Энергия излучения Е и при обнаружении «точечной цели» с эффективной отражающей поверхностью σ на расстоянии r в секторе обзора, ограниченном телесным углом Ω , находят из соотношения:

где Α площадь раскрыва приемной оптики; η к - к.п.д. приемной оптики, учитывающий потери в оптической системе; Ε п - энергия порогового сигнала; е - коэффициент ослабления излучения в атмосфере.

Если размеры цели больше размеров сечения пучка излучения в районе цели (такой случай является типичным при измерении дальности до визуально наблюдаемых объектов), энергию излучения определяют по формуле:

где ρ – коэффициент отражения (альбедо) от цели.

Площадь раскрыва А приемной оптики выбирают из конструктивных соображений. Коэффициент полезного действия приемной оптики с учетом потерь в интерференционном фильтре, стоящем на входе приемника, обычно лежит в пределах η к =30…50%.

Значение эффективной отражающей поверхности σ зависит от размеров, характера цели и используемой длины волны. Для большинства целей по порядку величины она совпадает со значением σ в радиодиапазоне. Коэффициент отражения ρ , как и σ , связан с характером цели. Значение ρ для длин волн используемых в настоящее время лазеров лежит в пределах 0,2…0,9.

Энергия порогового сигнала Ε п зависит от заданной надежности обнаружения (заданных значений вероятности правильного обнаружения и вероятности ложной тревоги), типа используемого приемника, рабочей длины волны, характера и интенсивности шумов.

В большинстве случаев (за исключением тех, когда необходимо измерять доплеровский сдвиг частоты) в локационных устройствах применяют приемники с непосредственным фотодетектированием. Для длин волн, лежащих в видимом и ближнем ИК диапазонах, основным физическим эффектом, используемым для регистрации сигнала, является внешний фотоэффект. При этом первичным наблюдаемым сигналом является последовательность эмиттированных с поверхности фотокатода фотоэлектронов. В средней ИК области используется внутренний фотоэффект и наблюдаемым сигналом являются переходы электронов из валентной области в зону проводимости.

Эмиттированным фотоэлектронам или актам переходов на выходе фотоприемников соответствуют последовательности одноэлектронных импульсов, имеющих тот же закон распределения.

Низкая частота повторения, характерная для большинства лазеров, привела к преимущественному развитию цифровых методов измерения.

На рисунке приведен один из возможных вариантов структурной схемы цифрового дальномерного канала.




Регистром сдвига в момент излучения зондирующего импульса записывается единица. Импульсом синхронизации включается также генератор тактовых импульсов, импульсы которого используются для перемещения единицы вдоль регистра через интервал дискретизации по времени, который соответствует интервалу разрешения. Число разрядов регистра равно числу элементов разрешения по дальности. Выход каждого разряда регистра подключен к одному из входов вентиля совпадения. К другому входу вентиля поступает сигнал с выхода приемного устройства. При срабатывании схемы совпадения сигнал в цифровой форме подается на индикаторное устройство или в систему вторичной обработки.


4. АКУСТИЧЕСКАЯ РАЗВЕДКА

4.1 Общие сведения

Акустическая (вибро-акустическая) разведка ведется путем приема и анализа акустических волн инфразвукового, звукового и ультразвукового диапазонов, распространяющихся в воздушной среде и звукопроводящих материалах, вызванных шумами работающих двигателей машин, агрегатов и различного оборудования, взрывами, выстрелами, речью и т.п.

Для перехвата и регистрации разговоров, ведущихся как на открытой местности, так и в помещениях, автомобилях и т.п. используются средства акустической разведки: микрофоны, направленные микрофоны, контактные микрофоны (стетоскопы), акустические закладки, лазерные системы акустической разведки и т.д.

Те или иные средства акустической разведки выбираются в зависимости от возможности доступа в контролируемое помещение или к лицам, ведущим разговоры на интересующую тему.

Современные микрофоны динамического, конденсаторного или электретного типов имеют чувствительность 20-30 мВ/Па и способны регистрировать голос человека нормальной громкости на расстоянии до 10-15 м, а некоторые образцы на расстоянии до 20 метров. Применение направленных микрофонов и специальных методов шумовой очистки сигналов позволяет вести разведку в городских условиях на расстояниях до 50 м, в прочих условиях (при малых акустических шумах) на расстояниях до 200 м. Использование лазерных микрофонов позволяет вести акустическую разведку помещений с расстояний до 1000 м. Стетоскопы способны улавливать звуковые колебания через бетонные стены толщиной 0,3-0,5 м., а также через двери и оконные рамы.

В случае если имеется доступ в контролируемое помещение, в нем могут быть установлены миниатюрные микрофоны, соединительные линии которых выводятся в специальные помещения, где находится агент и установлена регистрирующая или передающая аппаратура. Длина соединительного кабеля может достигать 5000 м. Такие системы перехвата акустической информации называют проводными системами.

Микрофоны, устанавливаемые в контролируемых помещениях, выпускаются в сверхминиатюрном исполнении (диаметр менее 2 мм). Для улучшения чувствительности некоторые микрофоны комплексируются с предусилителями.

Наиболее широко используются акустические закладки, передающие информацию по радиоканалу. Такие устройства называют радиозакладками (радиомикрофонами и радиостетоскопами). Могут использоваться микрофоны с передачей информации по ИК каналу.

В качестве регистрирующей аппаратуры используются, как правило, магнитофоны и диктофоны с длительным временем записи. Для повышения качества и обеспечения возможности коррекции записанного разговора используются различные фильтры, микрофоны с узкой диаграммой направленности, специальные программно-аппаратные комплексы.

Для повышения скрытности при передаче перехваченного сигнала, например по радиоканалу, используются сложные сигналы (например, шумоподобные или с псевдослучайной перестройкой несущей частоты и т.п.) и различные способы кодирования информации (скремблирование, шифрование и т.д.). Для обеспечения более долговечной работы и энергетической скрытности используются управляемые средства съема. Включение таких закладок производится дистанционно, или, например, только в момент ведения разговоров при наличии акустического сигнала.

Говоря о направленных микрофонах, подразумевают, прежде всего, ситуации акустического контроля источников звука на открытом воздухе, когда эффектами так называемой реверберации акустических полей можно пренебречь. Для таких ситуаций решающим фактором оказывается удаленность источника звука от направленного микрофона, что приводит к значительному ослаблению уровня звукового поля. Кроме того, при большой дистанции становится заметным ослабление звука из-за разрушения пространственной когерентности поля вследствие наличия естественных рассеивателей энергии, например, средне- и крупномасштабных турбулентностей атмосферы, создающих помехи при ветре. Так на дистанции 100 м давление звука ослабляется на величину не менее 40 дБ (по сравнению с дистанцией 1 м), и тогда степень громкости обычного разговора в 60 дБ окажется в точке приема не более 20 дБ. Такое давление меньше уровня реальных внешних акустических помех и пороговой чувствительности обычных микрофонов.

В отличие от обычных, направленные микрофоны должны иметь:

Высокую пороговую акустическую чувствительность как гарантию того, что ослабленный звуковой сигнал превысит уровень собственных (в основном тепловых) шумов приемника. Даже при отсутствии внешних акустических полей это является необходимым условием контроля звука на значительном расстоянии от источника;

Высокую направленность действия как гарантию того, что ослабленный звуковой сигнал превысит уровень остаточных внешних помех. Под высокой направленностью действия понимается способность подавлять внешние акустические помехи с направлений, не совпадающих с направлением на источник звука.

Соблюсти эти требования в полном объеме на практике (для одного микрофона)- задача исключительно сложная. Более реальным стало решение частных задач, например создание слабонаправленного микрофона с высокой чувствительностью или, наоборот, создание высоконаправленного микрофона с малой чувствительностью, что привело к разнообразию видов направленных микрофонов. Рассмотрим некоторые из них.

Параболический микрофон представляет собой отражатель звука параболической формы, в фокусе которого расположен обычный микрофон.



Звуковые волны с осевого направления, отражаясь от параболического зеркала, суммируются в фазе в фокальной точке А. Возникает усиление звукового поля. Чем больше диаметр зеркала, тем большее усиление может обеспечить устройство. Если направление прихода звука не осевое, то сложение отраженных от различных частей параболического зеркала звуковых волн, приходящих в точку А, даст меньший результат, поскольку не все слагаемые будут в фазе. Ослабление тем сильнее, чем больше угол прихода звука по отношению к оси. Создается, таким образом, угловая избирательность по приему.

Отражатель изготавливается как из оптически непрозрачного, так и прозрачного (например, акриловая пластмасса) материала. Величина внешнего диаметра параболического зеркала может быть от 200 до 500 мм.

Параболический микрофон является типичным примером высокочувствительного, но слабонаправленного микрофона.

Плоские фазированные решетки реализуют идею одновременного приема звукового поля в дискретных точках некоторой плоскости, перпендикулярной к направлению на источник звука.


В этих точках (А1, А2 и т.д.) размещаются либо микрофоны, выходные сигналы которых суммируются электрически, либо, и чаще всего, открытые торцы звуководов, например трубки достаточно малого диаметра, которые обеспечивают синфазное сложение звуковых полей от источника в некотором акустическом сумматоре. К выходу сумматора подключен микрофон.

Если звук приходит с осевого направления, то все сигналы, распространяющиеся по звуководам, будут в фазе, и сложение в акустическом сумматоре даст максимальный результат. Если направление на источник звука не осевое, а под некоторым углом к оси, то сигналы от разных точек приемной плоскости будут разными по фазе и результат их сложения будет меньшим. Чем больше угол прихода звука, тем сильнее его ослабление.

Число приемных точек в таких решетках составляет несколько десятков.

Конструктивно плоские фазированные решетки встраиваются либо в переднюю стенку атташе-кейса, либо в майку-жилет, которая надевается под рубашку и т.п. Необходимые электронные блоки могут располагаться также в кейсе, либо под одеждой. Таким образом, плоские фазированные решетки с камуфляжем визуально более конспиративны по сравнению с параболическим микрофоном.

Микрофон – труба представляет собой трубчатую фазированную приемную акустическую антенну нагруженную на высокочувствительный микрофон или решетку микрофонов, включенных последовательно. В отличие от параболических микрофонов и плоских акустических решеток принимает звук не на плоскости, а вдоль некоторой линии, совпадающей с направлением на источник звука.

Характерным представителем такого типа микрофонов является микрофон «Акустическое ружье».



Микрофон имеет несколько десятков тонких трубок длиной от нескольких сантиметров до метра и более. Длина трубок рассчитывается из условия резонанса на частотах присутствующих в акустических колебаниях создаваемых речью. Трубы собираются в пучок: длинные в центре, короткие по наружной поверхности пучка. Концы трубок с одной стороны образуют плоский срез, входящий в предкапсюльный объем микрофона. Звуковые волны, приходящие к приемнику по осевому направлению, через трубки поступают п предкапсюльный объем в одинаковой фазе, и их амплитуды складываются арифметически. Звуковые волны, приходящие под углом к оси, оказываются сдвинутыми по фазе, так как трубки имеют разную длину. Следовательно, их суммарная амплитуда будет значительно меньше. Дальность приема сигналов может быть увеличена за счет использования большего количества трубчатых элементов.

Трубчатые микрофоны «бегущей волны» также принимают звук вдоль линии, совпадающей с направлением на источник звука.



Основой микрофона является звуковод в виде жесткой полой трубки диаметром 10-30 мм со специальными щелевыми отверстиями, размещенными рядами по всей длине звуковода, с круговой геометрией расположения для каждого из рядов. Очевидно, что при приеме звука с осевого направления будет происходить сложение в фазе сигналов, проникающих в звуковод через все щелевые отверстия, поскольку скорости распространения звука вне трубки и внутри нее одинаковы. Когда же звук приходит под углом к оси микрофона, то это ведет к фазовому рассогласованию, так как скорость звука в трубке будет больше осевой составляющей скорости звука вне ее, вследствие чего снижается чувствительность приема. Обычно длина трубчатого микрофона от 15-200 мм до 1 м. Чем больше его длина, тем сильнее подавляются помехи с боковых и тыльного направлений.

Лазерные микрофоны используют для перехвата информации отраженный и промодулированный зондируемой поверхностью луч лазера.

Зондируемый объект- обычно оконное стекло- представляет собой своеобразную мембрану, которая колеблется со звуковой частотой, создавая фонограмму разговора. Генерируемое лазерным передатчиком излучение, распространяясь в атмосфере, отражается от поверхности оконного стекла и модулируется акустическим сигналом, а затем воспринимается фотоприемником, который и восстанавливает разведываемый сигнал.

В данной технологии принципиальное значение имеет процесс модуляции, который можно описать следующим образом.

Звуковая волна, генерируемая источником звукового сигнала, падает на границу раздела воздух- стекло и создает своего рода вибрацию, то есть отклонения поверхности стекла от исходного положения. Эти отклонения вызывают дифракцию света, отражающегося от границы. Если размеры падающего оптического пучка малы по сравнению с длиной «поверхностной» волны, то в суперпозиции различных компонент отраженного света будет доминировать дифракционный пучок нулевого порядка. В этом случае, во-первых, фаза световой волны оказывается промодулированной по времени с частотой звука и однородной по сечению пучка, а во-вторых, пучок «качается» с частотой звука вокруг направления зеркального отражения.




В качестве источника излучений может применяться, например, гелий-неоновый лазер. Наводка лазерного излучения на оконное стекло нужного помещения осуществляется с помощью телескопического визира. На сегодняшний день уже появились принципиальные возможности регистрации колебаний стекла на расстоянии до 10ˉ¹ - 10ˉ¹ м. Дальность ведения разведки составляет до 1000м.

В точке расположенной по нормали к оконному остекленению достаточно организация одного контрольного поста (КП). В противном случае необходимо организовывать два КП, место второго выбирается с учетом закона отражения светового луча φ1= φ2.

4.3 Обработка перехваченных речевых сигналов

Человеческому слуху, как известно, присуще свойство маскировки. Слабые звуки маскируются более сильными. Каждый звук, приведенный в таблице, мы услышим только в отсутствие более громких звуков.



Если прослушать записанную на улице магнитофонную запись, то основное, что мы услышим, это гул, в котором сольются множество непонятных звуков, попавших из акустического поля в микрофон. Кроме того, на электронную аппаратуру записи, передачи и воспроизведения речевого сигнала действуют разнообразные электрические и электромагнитные помехи, которые мы тоже слышим в наушниках.

Способы очистки речевых сигналов от пространственной помехи, источник которой расположен в стороне, заложены в конструкциях направленных микрофонов. Однако существуют акустические помехи расположенные на одной оси с источником речевого сигнала, либо помехи достаточно значительные, чтобы оказывать мешающее действие даже при использовании направленных микрофонов.

Для повышения качества и обеспечения возможности коррекции записанного разговора используются стереомагнитофоны и эквалайзеры. Стереомагнитофоны позволяют за счет стереоэффекта дифференцировать и отделять от информативной разговорной речи такие помехи, как шумы бытовых приборов, внешние уличные шумы и т.д. Эквалайзеры представляют собой устройства с набором различных фильтров: фильтров верхних и нижних частот, полосовых, октавных, чебышевских и других. Эти фильтры включаются по определенной программе в зависимости от характера искажений сигнала и помех. Наряду с эквалайзерами для повышения разборчивости речи используются специальные программно-аппаратные комплексы.

В качестве примера шумовой очистки речевого сигнала рассмотрим использование адаптивного фильтра (АФ).

По способу, различения помехи от сигнала, АФ подразделяются на одноканальные (АФ1) и двухканальные (АФ2). Одноканальный фильтр имеет только основной вход, а двухканальный дополнительно опорный вход.



В АФ1 сигнал помехи «предсказывается» фильтром линейного предсказания (ФЛП) на основании анализа поступающего на вход зашумленного речевого (РС) сигнала и затем вычитается из этого сигнала. Принцип работы такого фильтра основан на том, что РС является случайным процессом и предсказан быть не может, а все что можно предсказать – это помеха. АФ1 используется для подавления периодических и узкополосных помех, например, наводки от сети переменного тока, шума кондиционера, «гудения» механизмов и т.п. АФ1 не может избавиться от широкополосных шумовых помех: музыки, речи, гула большого помещения и т.п.

АФ2 имеет два входа: на основной (ОСН) вход поступает зашумленный РС, на опорный (ОП) – сигнал помехи. Все, что находится «похожего» в этих каналах, вычитается из зашумленного сигнала. АФ2 используется для подавления периодических, узкополосных и широкополосных помех вплоть до разделения двух разговоров.

Работу АФ можно представить как «вычитание» спектра помехи из спектра зашумленного сигнала. АФ1 практически полностью устраняет мощные гармонические составляющие из зашумленного РС. При использовании АФ2 эффективность определяется способом получения опорного сигнала. Отношение сигнал/помеха (SNR) на выходе АФ2 определяется только отношением SNR на опорном входе:

Таким образом, чем больше помеха и меньше сигнал на ОП входе, тем лучше отношение SNR на выходе АФ2. В идеальном случае, когда на ОП входе присутствует только помеха, она подавляется практически полностью. Например, при зашумлении полезного РС «шумом» радиопередачи, следует подключить опорный вход АФ2 к электрическому сигналу радиоприемника, принимающего ту же программу. Если оба канала принимаются с помощью микрофонов из акустического поля, то микрофон ОП входа необходимо расположить вблизи источника помехи.

Точно по такому же принципу осуществляют шумоочистку речевого сигнала при использовании, например, активной виброакустической помехи.

Один датчик стереостетоскопа располагается на стене в непосредственной близости от электроакустического преобразователя системы защиты, где уровень помехи максимален (точка 1), второй – в точке с минимальным соотношением сигнал / помеха (точка 2). В паузах между разговорами рассчитывается коэффициент ослабления шума вибрации при его распространении по защищаемой конструкции. Соответствующая поправка задается в компенсаторе

Далее, в момент беседы, происходит регистрация сигналов, и, с учетом поправки (ослабления сигнала) вносимой компенсатором, на вход сумматора подаются два смешанных сигнала, составляющая помехи у которых одинакова, а составляющая разведываемого сигнала различна по амплитуде. После вычитания на выходе сумматора получается, хотя и ослабленный по амплитуде, абсолютно очищенный речевой сигнал.

Принцип лазерной локации (ЛЛ) основан на том, что свет распространяется в вакууме прямолинейно и с постоянной скоростью. Испускается короткий лазерный импульс и засекатся время, лазерный луч отражается от лоцируемого объекта и возвращается назад, где его ловят при помощи телескопа и чувствительных фотодетекторов и определяют время между испусканием импульса и его возвращением. Зная скорость света, можно вычислить расстояние до объекта. Если импульс короткий и время между испусканием и приёмом отражённого сигнала измерено точно, то и расстояние до объекта можно вычислить с соответствующей точностью. Отдельно учитывается влияние атмосферы, которая искривляет луч (рефракция) и привносит задержку, но это уже тонкие детали.

Идеи о локации Луны высказывались давно, ещё в 20-х гг. XX века, когда ещё и лазеров-то не было. Едва только лазер был изобретён, тут же возникла идея применить уникальные свойства лазерного излучения для лазерной локации Луны (ЛЛЛ). Первые опыты по ЛЛЛ были проведены в 1962-63 гг. в США и СССР. Тогда ни о каких измерениях речи не шло, проверялась сама возможность осуществления такой локации. Опыты оказались вполне удачными, отражённый сигнал был уверенно зарегистрирован, хотя длительность импульса 1 мс не позволяла измерять расстояние точнее 150 км. В 1965-66 были проведены опыты с более короткими импульсами – была достигнута точность около 180 м. При этом точность была ограничена уже не столько длительностью импульса, сколько рельефом местности.

Потом была высказана идея – для повышения точности локации доставить на Луну уголковые отражатели (УО). Уголковые отражатели примечательны тем, что возвращают сигнал всегда строго в обратном направлении, а кроме того, сигнал не имеет размазывания по времени, обусловленного рельефом местности.

Утверждается, что на Луну были доставлены 5 уголковых отражателей – два на советских луноходах и три американскими астронавтами – «Аполлон-11», «Аполлон-14» и «Аполлон-15».

На этом занудности-банальности кончаются, а дальше начинаются волшебные сказки с невероятными чудесами и детективными тайнами!

Начнём с того, что УО, установленный на «Луноходе-1», неожиданно «потерялся»! Причём, на этот счёт есть два мнения. Ведущий научный сотрудник, зав. аспирантурой Пулковской обсерватории, к.ф.-м.н. Е.Ю.Алёшкина

в своей статье утверждает, что его УО вышел из строя.

Это произошло при движении в очень сложных условиях внутри одного из кратеров. На стенке этого кратера притаился еще один, вторичный, маленький. Это самое подлое на Луне. Чтобы выбраться из этого паршивого кратера оператор-водитель принял вместе с экипажем решение луноход сдать назад. А солнечная панель была откинута. И получилось так, что крышкой солнечной панели он въехал в стенку этого невидимого, ведь камеры смотрели только вперед, кратера. Он черпнул лунного грунта на солнечную панель. А после того, как выбрались, решили эту панель закрыть. Но лунная пыль такая противная, что ее так просто не стрясешь. За счет запыления солнечной батареи упал зарядный ток. а из-за того, что пыль стряслась на радиатор, нарушился тепловой режим. В итоге в этом злополучном кратере «Луноход-2» и остался. Все попытки спасти аппарат закончились ничем.

Со вторым история получилась глупая. Четыре месяца он уже находился на спутнике Земли. 9 мая я сел за штурвал . Мы угодили в кратер, навигационная система вышла из строя.

Как выбираться? Не раз мы уже попадали в подобные ситуации. Тогда просто закрывали солнечные батареи и выбирались. А тут - в группе управления новые люди. Они и приказали не закрывать и так выбираться. Мол, закроем, и не будет откачки тепла из лунохода, приборы перегреются.

Мы не послушались и попробовали выехать так. Зацепили лунный грунт. А лунная пыль такая липкая. А тут еще приказывают закрыть панель солнечной батареи - мол, пыль сама по себе и осыплется. Она и осыпалась - на внутреннюю панель, луноход перестал получать подзарядку солнечной энергией в необходимом объеме и постепенно обесточился. 11 мая сигнала от лунохода уже не было.

Эту информацию подтверждает... LRO! Вот изображение «Лунохода-2» с открытой крышкой, направленного на восток:

В обшем, второй луноход сейчас лоцировать бесполезно.

Рабочий диапазон углов для уголкового отражателя, установленного на луноходах, составляет ±10 градусов. Для того, чтобы можно было лоцировать УО, установленный на луноходе, с учётом лунной либрации величиной примерно 7 градусов,

луноход должен быть надлежащим образом ориентирован на Землю по азимуту (на субтерральную точку) и углу места с точностью 2-3 градуса .

UPD от 03.11.2013. Я созвонился с В.П.Долгополовым и уточнил размещение уголковых отражателей на корпусе лунохода - они расположены с наклоном строго вперёд по курсу, именно так, как изображено на фотографиях музейных макетов.

А теперь вспоминаем слова Довганя о том, что «Луноход-2» смотрит на восток, и пристально вглядываемся в карту:


Зелёными стрелками показана фактическая ориентация луноходов, жёлтыми - необходимая для успешной локации УО, установленных на луноходах. Субтерральная точка, которая находится в центре изображения, и на которую по азимуту должен быть ориентирован «Луноход-2», находится на юго-запад от «Лунохода-2», а «Луноход-2» повёрнут на восток (на мой взгляд, азимут составляет примерно 100-110 градусов) - в таком положении угол падения лоцирующего луча на УО примерно 70 градусов, угол совершенно запредельный для кварцевого УО, т.е. уголковый отражатель «Лунохода-2» абсолютно нефункционален. И астрономы его успешно лоцируют вот уже почти 40 лет??? Закрываю глаза и представляю, как фотоны с лихим пируэтом заныривают в уголковый отражатель развёрнутого задом наперёд «Лунохода-2», чтобы там отразиться и проделав обратный пируэт направиться к Земле... Шехерезада нервно курит в сторонке! Ей сказок хватило только на 1001 ночь.

Возникает закономерный вопрос - а что же они (астрономы) тогда лоцировали?

Более-менее подробно детали американского эксперимента описаны в документе Apollo 11 Preliminary Science Report . Подробности советских экспериментов по лазерной локации Луны, проводившихся в Крымской астрофизической обсерватории (КрАО) приведены во втором томе сборника «Передвижная лаборатория на Луне ЛУНОХОД-1» . Там же приведена формула вычисления величины ответного сигнала

и указан результат расчёта - 0,5 фотоэлектрона с одного импульса т.е. с двух импульсов лазера должен быть зарегистрирован примерно 1 фотоэлектрон.

Количество фотончиков, которые долетят до Луны, равно количеству выпущенных из лазера умножить на этот коэффициент прозрачности N M =К λ N t . Скажем, для КрАО он указывается в среднем 0,73. Для более высокогорных обсерваторий атмосфера прозрачнее. Препятствие в виде атмосферы встретится на пути фотончиков ещё раз, когда отражённые фотончики будут возвращаться на Землю - результат придётся ещё раз умножить на коэффициент прозрачности атмосферы К λ .

Луч, выпущенный из лазера, расходится. Тому есть две принципиальные причины. Первая - дифракционное расширение пучка. Оно определяется как отношение длины волны света к диаметру пучка. Следовательно, чтобы его снизить, нужно увеличивать диаметр пучка. Для этого луч лазера расширяют и пропускают через тот же телескоп, которым потом будут ловить ответные фотоны. Переключение осуществляется перекидным зеркалом - учитывая, что ответные фотоны прилетят только через 2,5 секунды, это совсем несложно обеспечить. Для телескопа с выходным диаметром 3 метра дифракционное расширение пучка составляет всего 0,05" (угловой секунды). Гораздо сильнее вторая причина - турбулентность в атмосфере. Она обеспечивает расходимость пучка на уровне примерно 1". Эта причина принципиально неустранима. Единственный способ борьбы с нею - выносить телескоп за пределы атмосферы.

Итак, луч на выходе из атмосферы имеет расходимость θ. Для малых углов θ можно пользоваться приближением θ = tg(θ) = sin(θ). Следовательно, луч осветит пятно диаметром D = Rθ, где R - расстояние до Луны (в среднем 384 000 км, максимум 405 696 км, минимум 363 104 км). Луч с расходимостью 1" осветит на Луне пятно диаметром примерно 1,9 км. Площадь пятна, как известно из курса геометрии, равна .

Количество света, попавшего в телескоп в результате отражения от УО или лунного грунта, пропорционально площади телескопа. Для телескопа диаметром d площадь равна .

В случае отражения от УО далеко не все фотончики, попавшие на Луну, попадут на УО и отразятся. Количество фотончиков, отражённых от УО, пропорционально площади отражателя S 0 и его коэффициенту отражения К 0 . (Это при условии, что вообще задели УО хотя бы краешком пятна.) Для отражателей французского изготовления общая площадь равна 640 см 2 с коэффициентом отражения 0.9, но надо помнить, что для призм с треугольной лицевой гранью рабочая площадь составляет 2/3 от общей. Американские были изготовлены из неметаллизированных кварцевых призм и имели коэффициент отражения втрое меньше, зато большую площадь - УО, якобы доставленные экспедициями экспедициями «Аполлон-11» и «Аполлон-14» составляет 0.1134 м 2 , «Аполлон-15» - 0.34 м 2 (NASA-CR-113609). В результате количество фотончиков, которые отразятся от УО, составит .

Вообще-то распределение фотончиков по площади пятна существенно неравномерное :

Однако при суммировании результатов по несколькми лазерным «выстрелам» с целью выделить полезный сигнал на фоне шумов эта неравномерность сгладится.

Далеко не все фотончики, отразившиеся от УО, попадут в телескоп. Отражённый луч имеет расходимость θ" и осветит на Земле пятно диаметром L=Rθ". Площадь пятна на Земле, по которому распределится отражённый пучок, равна . Из этого пятна в телескоп попадёт (если попадёт, что тоже надо проверить) количество фотонов . Для французских УО, установленных на луноходах, расходимость отражённого пучка указана 6" (для длины волны рубинового лазера 694,3 нм), что даёт диаметр отражённого пятна на Земле 11 км, американские были сделаны из триппель-призм меньшего размера, а поэтому имели чуть большую расходимость 8,6" (тоже для длины волны рубинового лазера 694,3 нм), диаметр пятна на Земле будет около 16 км. Вообще-то расходимость отражённого пучка определяется дифракцией , т.е. отношением длины волны лазера к апертуре одного элемента УО θ" = 2.44 λ/D RR . Поэтому применение зелёного лазера с длиной волны 532 нм вполне может быть оправдано - несмотря на большее поглощение и рассеивание зелёного света в земной атмосфере по сравнению с красным и инфракрасным.

Как видим, получили практически ту же формулу, которая была указана в работе Кокурина и др., только в той были добавлены ещё и коэффициенты прохождения в передающем и приёмном тракте, эффективность квантового преобразования фотоприёмника (сколько фотонов из числа попавших в телескоп будет зафиксировано в виде электрического сигнала). Ещё не хватает зависимости эффективной площади отражения от угла падения, т.е. формулы выведены из предположения о близком к нормальному углу падения лоцирующего луча на УО. На самом деле зависимость вот такая:

В случае отражения от грунта большая часть света поглотится, а оставшаяся рассеется по закону, близкому к ламбертовскому (равномерно во все стороны), в телесном угле 2π стерадиан. На самом деле отражение от Луны несколько хитрее - у лунного грунта присутствуют ярко выраженные эффекты обратного рассеяния и оппозиционный эффект, которые приводят к тому, что строго в обратном направлении лунный грунт отражает в 2-3 раза больше, чем обычная ламбертовская (матовая) поверхность. Грубо говоря, вся поверхность Луны работает как уголковый отражатель, хотя и не очень хороший.

Альбедо Луны в среднем считается равным 0,07, хотя в разных местах видимой поверхности Луны альбедо имеет величину от 0,05 до 0,16. (UPD: По свеженьким данным , полученным лазерным альтиметром LOLA , при отражении строго назад альбедо может достигать аж 0.33, а в некоторых постоянно тёмных кратерах на южном полюсе даже 0.35!)

Проверяем, какая часть освещённого пятна попадёт в телескоп. Поле зрения телескопа определяется его максимальным увеличением, которое определяется его диаметром. Расчёт для телескопа КрАО диаметром 2.64 м даёт поле зрения 22", в работе приводится величина 15" - величины близкие. Размер освещаемого пятна обычно меньше, так что всё пятно оказывается в поле зрения телескопа.

Количество фотонов, отражённых от лунного грунта и попавших в телескоп, равно .

Отсюда выводим формулу оценки эффективности применения уголкового отражателя как отношение блеска УО к блеску лунного грунта . Беглого взгляда на эту формулу достаточно, чтобы увидеть, что для повышения уровня ответного сигнала от УО по сравнению с отражением от грунта, необходимо снижать угол расходимости лоцирующего лазерного луча - зависимость квадратичная.

(UPD: "Луноход-1" хоть и стоит неудачно, но его таки видно. Расчётный угол падения на его УО - 31,5 градус от нормали (без учёта либрации), при таком угле ЭПР уменьшается на порядок и усиливается расползание импульсного отклика из-за неперпендикулярности панели УО к лоцирующему лучу. А вот для "Лунохода-2" расчётный угол падения - примерно 70 градусов от нормали - угол совершенно запредельный даже для кварцевого УО. Отражение от его УО невозможно. Никакая либрация не поможет.)

От УО в телескоп должно попадать полторы сотни фотончиков, от грунта штук 5, а Алёшкина пишет про "1 фотон на 10-20 выстрелов". Это что же такое получается? Регистрируется фотонов даже меньше, чем должно было быть от грунта!

А так и должно быть! Вспоминаем, что при локации в стороне от субтерральной точки поверхность Луны существенно неперпендикулярна лучу, стало быть, отражённый сигнал размазывается во времени,

а временной фильтр (temporal filter) вырезает из него только те фотончики, которые соответствуют ожидаемому результату.


Если же вспомнить, что поверхность Луны не является идеально гладкой, а на ней встречаются горы, кратеры, то наличие стенки кратера или склона горы, обращённого к Земле, на который лоцирующий луч лазера падает перпендикулярно, даст точно такой же компактный по времени сигнал, как и отражённый от УО, но меньшей интенсивности.

Если мы ослабим расчётный сигнал от грунта как соотношение площади участка лунной поверхности, перпендикулярной к лоцирующему лучу, к площади сечения лоцирующего луча, мы получим полное соответствие экспериментальных результатов расчёту для гипотезы с отражением от грунта. Учитывая, что диаметр лоцирующего луча на Луне 2-7 км, то горы или стенки кратера высотой 2-3 км уже достаточно, а на Луне таких гор и кратеров хватает. Причём, даже не требуется идеально плоской поверхности. Как следует из расчёта, при альбедо 0.16 (а горы на Луне светлее морей) расчётное количество фотончиков от грунта превышает экспериментальные значения примерно в 3 раза, т.е. для совпадения с расчётом достаточно, чтобы только треть освещённого пятна попадало на поверхность, лежащую на ожидаемой плоскости. Остальные 2/3 могут иметь какой угодно рельеф.


Красной линией выделена условная поверхность, отражённый сигнал от которой пройдёт через временной фильтр. В идеале это должен быть фрагмент сферы с радиусом 380 000 км и с центром примерно в центре Земли. Такой фрагмент сферы мало отличается от плоскости.

Гипотеза с отражением сигнала от УО не подтверждается опубликованными экспериментальными данными - ошибка не на проценты, даже не в разы, а на порядки.

В общем, мне всё ясно с нашей прикладной астрономией -

Лазерной локацией в зарубежной печати называют область оптикоэлектроники, занимающуюся обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемых лазерами. Объектами лазерной локации могут быть танки, корабли, ракеты, спутники, промышленные и военные сооружения. Принципиально

лазерная локация осуществляется активным методом. Нам уже известно, что лазерное излучение отличается от температурного тем, что оно является узконаправленным, монохроматичным, имеет большую импульсную) мощность и высокую спектральную яркость. Все это делает оптическую локацию конкурентоспособной в сравнении с радиолокацией, особенно при ее использовании в космосе (где нет поглощающего воздействия атмосферы) и под водой (где для ряда волн оптического диапазона существуют окна прозрачности).

В основе лазерной локации, так же как и радиолокации, лежат три основных свойства электромагнитных волн:

1. Способность отражаться от объектов. Цель и фон, на котором она расположена, по-разному отражают упавшее на них излучение. Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженного в этом случае излучения обратно пропорциональна длине волны в четвертной степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору, - чем короче волна, тем она выше. Поэтому-то и проявлялась по мере развития радиолокации тенденция перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверхкороткие радиоволны, становилось все более трудным делом, а затем и зашло в тупик.

Создание лазеров открыло новые перспективы в технике локации.

2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым производится просмотр пространства, позволяет определить направление на объект (пеленг цели) (рис. 40). Это направление находят по расположению оси оптической системы, формирующей лазерное излучение (в радиолокации - по направлению антенны). Чем уже луч, тем с большей точностью может быть определен пеленг. Определим коэффициент направленного действия и диаметр антенны по следующей простой формуле

Рис. 40. Координаты объекта: а - пеленг или азимут; угол места

где коэффициент направленного действия, площадь антенны, - длина волны излучения, мкм.

Простые расчеты показывают - чтобы получить коэффициент направленности около 1,5° при пользовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10 м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны.

Угловой раствор луча лазера, изготовленного с использованием твердотельного активного вещества, как известно, составляет всего и при этом без дополнительных оптических фокусирующих систем (антенн). Следовательно, габариты лазерного локатора могут быть значительно меньше, чем аналогичного радиолокатора. Использование же незначительных по габаритам оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.

3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение:

где расстояние до объекта, - скорость распространения излучения, время прохождения импульса до цели и обратно, с.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Совершенно ясно, что чем короче импульс, тем лучше (при наличии хорошей полосы пропускания, как говорят радисты). Но нам уже известно, что самой физикой лазерного излучения заложена возможность получения импульсов с длительностью . А это обеспечивает хорошие данные лазерному локатору.

Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них.

Прежде всего зона действия. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальностями действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора.

Другим параметром локатора является время обзора. Под ним понимается время, в течение которого лазерный луч производит однократный обзор заданного объема пространства.

Следующим параметром локатора являются определяемые координаты. Они зависят от назначения локатора. Если он предназначен для определения местонахождения наземных и надводных объектов, то достаточно измерять две координаты: дальность и азимут. При наблюдении за воздушными объектами нужны три координаты. Эти координаты следует определять с заданной точностью, которая зависит от систематических и случайных ошибок. Их рассмотрение выходит за рамки данной книги. Однако будем пользоваться таким понятием, как разрешающая способность. Под разрешающей способностью понимается возможность раздельного определения координат близко расположенных целей. Каждой координате соответствует своя разрешающая способность. Кроме того, используется такая характеристика, как помехозащищенность. Это способность лазерного локатора работать в условиях естественных (Солнце, Луна) и искусственных помех.

(кликните для просмотра скана)

И весьма важной характеристикой локатора является надежность. Это свойство локатора сохранять свои характеристики в установленных пределах в заданных условиях эксплуатации.

Схема лазерного локатора, предназначенного для измерения четырех основных параметров объекта (дальности, азимута, угла места и скорости) приведена на рис. 41 . Хорошо видно, что конструктивно такой локатор состоит из трех блоков: передающего, приемного и индикаторного. Основное назначение передающего блока - генерирование лазерного излучения, формирование его в пространстве, во времени и направлении в район объекта. Передающий блок состоит из лазера с источником возбуждения, модулятора добротности, сканирующего устройства, обеспечивающего посылку энергии в заданной зоне по заданному закону сканирования, а также передающей оптической системы.

Основное назначение приемного блока - прием излучения, отраженного объектом, преобразование его в электрический сигнал и обработка для выделения информации об объекте. Он состоит из приемной оптической системы, интерференционного фильтра, приемника излучения, а также блоков измерения дальности, скорости и угловых координат.

Индикаторный блок служит для указания в цифровой форме информации о параметрах цели.

В зависимости от того, для какой цели служит локатор, различают: дальномеры, измерители скорости (допплеровские локаторы), собственно локаторы (дальность, азимут и угол места).

Лазерная локация

Лазерной локацией в зарубежной печати называют область оптикоэлектроники, занимающуюся обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемых лазерами. Объектами лазерной локации могут стать танки, корабли, ракеты, спутники, промышленные и вооруженные сооружения. Принципиально лазерная локация осуществляется активным методом.

В основе лазерной локации, так же как и в радиолокации лежат три основных свойства электромагнитных волн:

1. Способность отражаться от объектов. Цель и фон, на котором она расположена, по-разному отражают упавшее на них излучение. Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженнного в этом случае излучения обратно пропорциональна длине волны в четвертой степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору - чем короче волна, тем она выше. Поэтому-то и проявлялась по мере развития радиолокации тенденция к перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверх короткие радиоволны становилось все труднее и труднее, а затем вовсе и зашло в тупик. Создание лазеров открыло новые перспективы в технике локации.

2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым проводится просмотр пространства, позволяет определить направление на объект(пеленг цели) Это направление находят по расположению оси оптической системы, формирующей лазерное излучение. Чем уже луч, тем с большей точностью может быть определен пеленг.

Простые расчеты показывают - чтобы получить коэффициент направленности около 1.5, при использовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны.

Угловой раствор луча лазера, изготовленного с помощью твердотельного активного вещества, как известно составляет всего 1.0 ... 1.5 градуса и при этом без дополнительных оптических систем. Следовательно габариты лазерного локатора могут быть значительно меньше, чем аналогичного радиолокатора. Использование же незначительных по габаритам оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.

3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение:

Где L - расстояние до обькта, с - скорость распространения излучения, t - время прохождения импульса до цели и обратно.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Совершенно ясно, что чем короче импульс, тем лучше.

Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них.

Прежде всего зона действия. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальностями действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора.

Другим параметром является время обзора. Под ним понимается время, в течении которого лазерный луч производит однократный обзор заданного объема пространства.

Следующим параметром локатора является определяемые координаты. Они зависят от назначения локатора. Если он предназначен для определения местонахождения наземных и подводных объектов, то достаточно измерять две координаты: дальность и азимут. При наблюдении за воздушными объектами нужны три координаты. Эти координаты следует определять с заданной точностью, которая зависит от систематических и случайных ошибок. Будем пользоваться таким понятием как разрешающая способность. Под разрешающей способностью понимается возможность раздельного определения координат близко расположенных целей. Каждой координате соответствует своя разрешающая способность. Кроме того, используется такая характеристика, как помехозащищенность. Это способность лазерного локатора работать в условиях естественных и искусственных помех. И весьма важной характеристикой локатора является надежность. Это свойство локатора сохранять свои характеристики в установленных пределах в заданных условиях эксплуатации.

Лазерной локацией называют область оптикоэлектроники, занимающегося обнаружением и определением местоположения различных объектов при помощи электромагнитных волн оптического диапазона, излучаемого лазерами. Объектами лазерной локации могут быть танки, корабли, ракеты, спутники, промышленные и военные сооружения. Принципиально лазерная локация осуществляется активным методом. Нам уже известно, что лазерное излучение отличается от температурного тем, что оно является узконаправленным, монохраматичным, имеет большую импульсивную мощность и высокую спектральную яркость. Все это делает оптическую локацию конкурентноспособной в сравнении с радиолокаций, особенно при ее использовании в космосе (где нет поглощающего воздействия атмосферы) и под водой (где лоя ряда волн оптического диапазона существуют окна прозрачности).

В основе лазерной локации, так же как и радиолокации, лежат три основных свойства электромагнитных волн:

1. Способность отражаться от объектов. Цель и фон на котором она расположена, по разному отражают упавшее на них излучение. Лазерное излучение отражается от всех предметов: металлических и неметаллических, от леса, пашни, воды. Более того, оно отражается от любых объектов, размеры которых меньше длины волны, лучше, чем радиоволны. Это хорошо известно из основной закономерности отражения, по которой следует, что чем короче длина волны, тем лучше она отражается. Мощность отраженного в этом случае излучения обратно пропорциональна длине волны в четвертой степени. Лазерному локатору принципиально присуща и большая обнаружительная способность, чем радиолокатору - чем, короче волна, тем она выше. Поэтому-то проявлялась по мере развития радиолокации тенденция перехода от длинных волн к более коротким. Однако изготовление генераторов радиодиапазона, излучающих сверх короткие радиоволны, становилось все более трудным делом, а затем и зашло в тупик.

Создание лазеров открыло новые перспективы в технике локации.

2. Способность распространяться прямолинейно. Использование узконаправленного лазерного луча, которым производиться просмотр пространства, позволяет определить направление на объект (пеленг цели).

Это направление находят по расположению оси оптической системы, формирующей лазерное излучение (в радиолокации - по направлению антенны). Чем уже луч, тем с большей точностью может быть определен пеленг. Определим коэффициент направленного действия и диаметр антенны по следующей простой формуле,

G = 4п * S

где G - коэффициент направленного действия, S - площадь антенны, м2, / - длина волны излучения мкм.

Простые расчеты показывают - чтобы получить коэффициент направленности около 1,5 при пользовании радиоволн сантиметрового диапазона, нужно иметь антенну диаметром около 10м. Такую антенну трудно поставить на танк, а тем более на летательный аппарат. Она громоздка и нетранспортабельна. Нужно использовать более короткие волны.

Угловой раствор луча лазера, изготовленного с использованием твердотельного активного вещества, как известно, составляет всего 1,0 - 1,5 градуса и при этом без дополнительных оптических фокусирующих систем (антенн). Следовательно, габариты лазерного локатора могут быть значительно меньше, чем аналогического радиолокатора. Использование же незначительных по габарита м оптических систем позволит сузить луч лазера до нескольких угловых минут, если в этом возникнет необходимость.

3. Способность лазерного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так. при импульсном методе дальнометрирования используется следующее соотношение:

L = ct и

где L - расстояние до объекта, км, С - скорость распространения излучения км/с, t и -время прохождения импульса до цели и обратно, с.

Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Совершенно ясно, что чем, короче импульс, тем лучше (при наличии хорошей полосы пропускания, как говорят радисты). Но нам уже известно, что самой физикой лазерного излучения заложена возможность получения импульсов с длительностью 10-7 - 10-8 с. А это обеспечивает хорошие данные лазерному локатору.

Какими же параметрами принято характеризовать локатор? Каковы его паспортные данные? Рассмотрим некоторые из них,см.рис.

Прежде всего з о н а д е й с т в и я. Под ней понимают область пространства, в которой ведется наблюдение. Ее границы обусловлены максимальной и минимальной дальности действия и пределами обзора по углу места и азимуту. Эти размеры определяются назначением военного лазерного локатора.

Другим параметром локатора является в р е м я о б з о р а. Под ним понимается время, в течение которого лазерный луч приводит однократный обзор заданного объема пространства.

Следующим параметром локатора являются о п р е д е л я е м ы е к о о р д и н а т ы. они зависят от назначения локатора. Если он предназначен для определения местонахождения наземных и надводных объектов, то достаточно измерять две координаты: дальность и азимут. При наблюдении за воздушными объектами нужны три координаты. Эти координаты следует определять с заданной точностью, которая зависит от систематических и случайных ошибок. Их рассмотрение выходит за рамки данной книги. Однако будем пользоваться таким понятием, как р а з р е ш а ю щ а я с п о с о б н о с т ь. Под разрешающей способностью понимается возможность раздельного определения координат близко расположенных целей. Каждой координате соответствует своя разрешающая способность. Кроме того, используется такая характеристика, как п о м е х о з а щ ищ е н н о с т ь. Это способность лазерного локатора работать в условиях естественных (Солнце, Луна) и искусственных помех.

И весьма важной характеристикой локатора является н а д е ж н н о с т ь. Это свойство локатора сохранять свои характеристики и установленных пределах в заданных условиях эксплуатации.

Схема лазерного локатора, предназначенного для измерения четырех основных параметров объекта (дальности, азимута, угла места и скорости) см. рис. на стр. 17. Хорошо видно, что конструктивно такой локатор состоит из трех блоков: передающего, приемного и индикаторного. Основное назначение передающего лока-тора - генерирование лазерного излучения, формирование его в пространстве, во времени и направлении в район объекта. Передающий блок состоит из лазера с источником возбуждения, модулятора добротности, сканирующего устройства, обеспечивающего посылку энергии в заданной зоне по заданному закону сканирования, а также передающей оптической системы.

Основное назначение приемного блока - прием излучения отраженного объектом, преобразование его в электрический сигнал и обработка для выделения информации об объекте. Оно состоит из приемной оптической системы, интерференционного фильтра, приемника излучения, а также блоков измерения дальности, скорости и угловых координат.

Индикаторный блок служит для указания в цифровой форме информации о параметрах цели.

В зависимости от того, для какой цели служит локатор, различают: дальномеры, измерители скорости (допплеровские локаторы), собственно локаторы(дальность, азимут, и угол места).

CХЕМА ЛАЗЕРНОГО ЛОКАТОРА

приемник

излучения

оптический фильтр

приемная оптическая система

ИНДИКАТОРНЫЙ БЛОК

ПРИЕМНЫЙ БЛОК

блок измерения дальности

блок измерения скорости

блок измерения угловых координат

Угол места

Скорость

Блок питания



Поделиться: