Коррозионное состояние. О методике определения коррозионного износа стальных конструкций

Cтраница 1


Коррозионное состояние и защищенность обсадной колонны могут быть оценены по плотности тока, стекающего с обсадной колонны, или по падению напряжения. Если плотность тока отрицательна, на данном участке колонны имеется анодная зона, в которой происходит коррозионное разрушение металла.  

Коррозионное состояние определяют осмотром на переходах и пересечениях с трубопроводами с неудовлетворительным состоянием защитного покрытия, не обеспеченных непрерывной катодной поляризацией защитной величины.  

Коррозионное состояние оборудования необходимо контролировать несколькими методами, взаимно дополняющими друг друга. Весьма важный способ - визуальный, который позволяет определить характер разрушения оборудования, возможность дальнейшей эксплуатации и прокорректировать методы защиты от коррозии. Однако внутренний осмотр может быть проведен лишь после остановки оборудования на ремонт. Наряду с визуальным методом используют приборные методы. Иногда используют метод рассверловки стенки оборудования на глубину, равную расчетной толщине стенки, и устанавливают момент, когда прокорродирует оставшаяся толщина стенки, соответствующая припуску на коррозию. При наличии в рабочей среде сероводорода пользуются водородными зондами для определения степени наводороживания металла оборудования.  

Коррозионное состояние среды характеризуется величиной рН, концентрацией кислорода и углекислого газа. Поскольку кислород и углекислый газ коррозионно-активны, удаление их из воды является одной из важнейших задач при подготовке воды. В отличие от кислорода углекислый газ частично взаимодействует с водой с образованием угольной кислоты.  

Коррозионное состояние сооружения определяют по протяженности коррозионноопасных зон путем электрических измерений. Результаты определения анодных и катодных зон на действующем сооружении представляются в виде графика распределения разности потенциалов.  

Коррозионное состояние подземного сооружения устанавливают электрическими измерениями и тщательным его осмотром.  


Коррозионное состояние подземных газопроводов и опасности их разрушения определяют а основе ряда электрических изме рений.  

Коррозионное состояние пятиколесного ротора может быть объяснено следующим образом. На первое колесо попадает большее количество капель серной кислоты, но температура среды здесь ниже, вследствие чего и агрессивность ниже.  

Коррозионное состояние подземных металлических сооружений города может быть точно охарактеризовано только после ряда электрических измерений.  


Обследование коррозионного состояния разнотипных МСП, эксплуатирующихся в морских условиях в течение более 10 лет без применения противокоррозиионных мероприятий, показало следующее.  

Контроль коррозионного состояния проводится методами магнитной дефектоскопии, радиографическим, с помощью ультразвукового прослушивания или телевизионных камер, пропускаемых внутри трубы. Исследование напряжений и деформаций проводятся механическими устройствами, запускаемыми по трубопроводу по окончании строительства, тензометрическим методом и др. Для обнаружения утечек пользуются визуальным контролем при обходах или облетах трассы, газоаналитическим, акустико-эмиссионным и другими методами.  

Коррозионное состояние трубопроводов является одним из основных факторов, характеризующих работоспособность ЛЧ МГ, надежность и безопасность ее эксплуатации. Защита трубопроводов определяется состоянием изоляционного покрытия и систем ЭХЗ.

Для установок электрохимзащиты (ЭХЗ) контроль технического состояния отдельных осуществляют путем периодических осмотров. При этом производят проверку показаний электроизмерительных приборов контрольными приборами, измерение потенциалов в точках дренажа, измерение электрического сопротивления цепи постоянного тока, оценку непрерывности работы установки катодной защиты по специальному счетчику или счетчику электрической энергии, контроль контактных соединений, анодных заземлений, узлов и блоков установок.

Осмотры производят не реже: 4-х раз в месяц для установок дренажной защиты, 2-х раз в месяц - для установок катодной защиты.

Постоянный контроль по работе установок катодной защиты обеспечивается телеметрическими устройствами. Это позволяет снизить затраты и время на объезды установок, сократить время перерывов в их работе от момента обнаружения отказа до замены или ремонта установки, повышает точность настройки и стабильность параметров средств ЭХЗ.

При проверке состояния электрохимзащиты участка МГ определяют:

Уровень катодной защиты трубопровода;

Величину поляризационных потенциалов методом отключения источника поляризации (СКЗ) или экстраполяционными методами с использованием этих же измерительных систем;

Токи поляризации, протекающие по трубопроводу, по методике, рекомендуемой ГОСТ;

Величину удельного электрического сопротивления грунта;

Состав проб межслойного электролита, содержащегося в местах вздутий, мешков и других дефектах изоляционного покрытия.

Контроль защищенности трубопроводов заключается в периодических измерениях потенциалов "сооружение-земля" на всем протяжении трубопровода и сравнении полученных значений с нормативным значением, а также в определении суммарного времени, в течение которого трубопровод на всем протяжении имеет защитное значение потенциалов.

Измерение потенциалов на всем протяжении трубопровода производят выносным электродом сравнения с шагом измерения 10-20 м не реже одного раза в пять лет. При этом первое измерение должно быть произведено по истечении не менее 10 месяцев после засыпки трубопровода.

Измерения потенциалов в контрольно-измерительных колонках (КИК) и выносным электродом в точках на трассе, имеющих минимальные значения потенциала, производят не менее двух раз в год. Дополнительно измерения выполняются при работах, связанных с развитием систем ЭХЗ, изменениями в режиме работы установок катодной защиты, при работах связанных с ликвидацией источников блуждающих токов.



По результатам измерений потенциалов должны быть построены графики и определена защищенность по протяженности, а на основании данных телеконтроля по работе установок катодной защиты или их технических осмотров - защищенность трубопроводов во времени.

Контроль технического состояния изоляционных покрытий в процессе строительства осуществляется на участках законченного строительства. Контроль сплошности выполняется способом катодной поляризации. Данные о результатах заносятся в исполнительную документацию.

Контроль изоляционных покрытий при эксплуатации проводят в процессе комплексного обследования МГ. Сопоставление данных полученных при обследовании МГ с данными исполнительной документации позволяет оценить изменение защитных свойств покрытий во времени и по протяженности.

Определение состояния покрытия на обследуемом участке оценивается в два этапа как прямым, так и косвенным методами.

Косвенно на основании анализа данных по изменению защитной плотности тока по протяженности и во времени, результатов измерений потенциала "трубопровод-земля" и коррозионного электрометрического обследования;

Прямым методом при выборочном шурфовании.

Косвенные методы определения состояния изоляции и системы ЭХЗ предполагают интегральные и локальные измерения.

Интегральными методами определяют характеристики обследуемого участка газопровода в целом. Эти методы позволяют оценивать состояние покрытия на всей длине участка и определять места отслоений и сквозных повреждений изоляции. При этом выявляются отдельные специфические зоны, в которых нужно применить локальные методы контроля покрытий и средств ЭХЗ.



Основными критериями определения периодичности контроля изоляции без вскрытия траншеи являются защитная плотность тока на трубопроводе и переходное сопротивление "трубопровод-земля", позволяющие интегрально оценить качество изоляционного покрытия. На основе этих данных с помощью искателей производят поиск мест повреждений изоляционного покрытия и осуществляют выборочное шурфование.

Прямой метод или выборочное шурфование предполагает вскрытие газопровода, очистку его поверхности от грунта, визуальное обследование изоляционного покрытия и измерение переходного сопротивления, например, методом "полотенца". При этом следует проводить измерения сплошности, адгезии, толщины и переходного электросопротивления покрытия. Отбор проб изоляции и лабораторные испытания покрытий выполняют через каждые 3 года эксплуатации. Одновременно производится отбор проб грунта и грунтового электролита для контроля системы ЭХЗ.

После обследования производится вскрытие изоляции, прежде всего на участках с механическими повреждениями и другими дефектами. При обнаружении на освобожденных местах коррозионных и других повреждений зона осмотра расширяется для определения границ поврежденного участка трубы. В обязательный осмотр входит участок кольцевого сварного стыка.

Контроль состояния изоляционных покрытий выборочным шурфованием производят через 3 года с начала эксплуатации покрытий, а при достижении критических значений ЭХЗ и снижения локального переходного сопротивления до 10 ом·м - один раз в год.

Как интегральные, так и локальные методы являются электрометрическими. Они используют приборы постоянного и переменного тока и подразделяются на контактные и бесконтактные.

Оценку коррозионного состояния осуществляют путем осмотра и инструментальных измерений в контрольных шурфах. Определения выполняют в первую очередь:

На участках с неудовлетворительным состоянием защитных покрытий;

На участках, не обеспеченных непрерывной катодной поляризацией защитной величины;

На коррозионно-опасных участках трассы, к которым относятся горячие участки с температурой транспортируемой продукции выше 40° С, участки трубопроводов, эксплуатирующиеся южнее 50-й параллели северной широты, в засоленных почвах (солончаках, солонцах, солодях, такырах, сорах и др.), на поливных почвах;

На участках блуждающих токов;

На участках выхода трубопроводов из грунта;

На пересечениях трубопроводов;

На склоновых участках оврагов, балок и рек;

На участках промышленных и бытовых стоков;

На участках с периодическим обводнением грунта.

При визуальном осмотре и индивидуальном измерении коррозионного состояния трубопровода в шурфе определяют:

Наличие и характер продуктов коррозии;

Максимальную глубину каверн;

Площадь поверхности, поврежденной коррозией.

Cтраница 2


Обследование коррозионного состояния действующих трубопроводов и кабелей, находящихся в зоне влияния блуждающих токов, производится путем измерения разности потенциалов труба - земля с помощью высокоомных вольтметров. Анодные зоны подземного сооружения весьма опасны и требуют срочных мер защиты. Оценка степени опасности коррозии в знакопеременных зонах производится по значению коэффициента несимметричности (табл. И.  

Анализ коррозионного состояния сборных водоводов показал, что срок их службы на Западно-Сургутском и Солкинском месторождениях не превышает 3 - 6 лет. За время эксплуатации только в системе поддержания пластового давления Западно-Сургутского месторождения заменено полностью 14 км трубопроводов. За 1978 г. на трубопроводах зарегистрировано 30 порывов и свищей на Солкинском месторождении и 60 порывов на Западно-Сургутском.  

Анализ коррозионного состояния металлоконструкций ОНГКМ свидетельствует о том, что ступенчатые расслоения, пронизывающие материал стенок оборудования оболочкового типа более чем на 50 %, являются недопустимыми.  

Анализ коррозионного состояния оборудования УКПГ на Оренбургском месторождении показал, что внутренняя поверхность оборудования покрыта равномерным слоем толщиной около 0 1 мм, представляющим собой пирофорные отложения.  

Обследование коррозионного состояния оборудования производства ПЭНД показывает, что основной причиной коррозии аппаратуры является воздействие на нее агрессивной среды, которая содержит хлороводород, образующийся при разложении катализатора. Процесс коррозии оборудования приводит к уменьшению его срока службы, частым ремонтам аппаратуры и загрязнению полиэтилена продуктами коррозии. Соединения железа, попадающие в полимер, отрицательно влияют на его физико-химические и механические свойства. Они вызывают преждевременное старение (деструкцию) полимера, нежелательную окрашиваемость изделий в темно-серый цвет, увеличивают хрупкость, снижают диэлектрические свойства полимера. Кроме того, при коррозии аппаратуры, покрытой лаками, бывает, что частицы лака попадают в полиэтилен, что проводит к его вспучиванию или к образованию пор внутри полимера.  

Под коррозионным состоянием ЛЧ МГ понимается количественное выражение эксплуатационных показателей участка ЛЧ МГ, содержащего дефекты коррозионного и (или) стресс-коррозионного происхождения.  


Для определения коррозионного состояния (диагностики) и своевременного выявления возможных коррозионных отказов находящиеся в эксплуатации машины периодически проверяют.  


Дистанционное определение коррозионного состояния в перспективе дает возможность проводить ускоренные испытания с постановкой управляемого эксперимента и моделирования отдельных стадий процесса коррозии.  

Для определения коррозионного состояния и выбора метода защиты вновь построенных газопроводов перед сдачей их в эксплуатацию (до присоединения к действующей сети) производятся электрические измерения. Предварительно вновь проложенные трубопроводы шунтируют эксплуатируемым, чтобы получить истинную картину электрического состояния газопроводов, которая возникает после подключения их к действующей сети. Если при измерениях будет установлено, что потенциалы не превышают 0 1 в, то обычно присоединение производится без всяких условий. При потенциалах свыше ОД в (до 0 6 в) включать под газ новый газопровод можно при условии, что з течение 3 - 5 месяцев будет осуществлена защита. При больших потенциалах до устройства защиты включать под газ вновь построенные газопроводы нельзя, так как через короткий промежуток времени газопровод может быть разрушен током, что в свою очередь может привести к тяжелым последствиям. Из практики известны многочисленные случаи, когда незащищенные газопроводы разрушались блуждающими токами через 1 - 2 месяца после ввода их в эксплуатацию, а также до сдачи их в эксплуатацию, особенно в районах тяговых подстанций железных дорог.  

Долгосрочный прогноз коррозионного состояния участков газопроводов необходимо использовать для выбора характерных точек наблюдения за динамикой коррозии в системах стационарного и мобильного коррозионного мониторинга и коррекции регламента контроля параметров коррозии и защиты газопроводов от различных видов коррозии.  

Для контроля коррозионного состояния применяют методы перазрушаю-щего контроля, которые могут быть использованы как постоянно, так и периодически (или при необходимости как дополнительные) и на любой стадии эксплуатации объектов независимо от их состояния. К таким методам относятся ультразвуковой, радиографический, акустической эмиссии метод цветной дефектоскопии.  

Для определения коррозионного состояния системы используются термодинамические и экспериментальные параметры данной системы, а также эмпирические зависимости. Программа включает прогнозирование потенциала металла системы, силы тока коррозии, хода поляризационных кривых, области иммунности (активную и пассивную), она позволяет находить наиболее неблагоприятные сочетания условий, обеспечивающие развитие коррозии. Авторы наметили пути усовершенствования программы прогнозирования коррозии, что должно повысить точность и достоверность прогноза для величин, характеризующих корродирующую систему.  



Поделиться: