Что называется напряжением на данном участке цепи. Как найти напряжение тока


Когда электрическая цепь создана, свободные заряды (электроны) получают возможность двигаться. Это движение называется электрическим током, или иначе, потоком электричества. Такое движение подобно движению жидкости внутри полой трубы, но не во всём сохраняется такое подобие, есть и существенные различия.

Сила движения свободных зарядов определяется напряжением, которое является специфическим показателем потенциальной энергии. Напряжение всегда характеризуется двумя точками в электрической цепи, и потому правильнее говорить не о напряжении, а о падении напряжения между двумя точками цепи. Обычно слово падение опускают, подразумевая под обозначением «напряжение» - падение напряжения на определённом участке электрической цепи. Это значит, что употребляя термин «напряжение» всегда подразумеваются две точки участка цепи, начальная и конечная. Для одной точки понятие падения напряжения не имеет смысла, всегда две точки и конкретный участок цепи .

Свободные заряды, а в проводниках первого рода (металлы и сплавы) ими являются электроны, имеют свойство двигаться через проводник с некоторой степенью трения, оказывая сопротивление к своему движению под действие источника тока (ЭДС). Это противостояние так и называется - сопротивление .

Величина тока в цепи зависит от величины напряжения, которое разгоняет свободные электроны, и от величины сопротивления участка цепи. Точно так же как и падение напряжения (напряжение), сопротивление является величиной характеризующей участок цепи, то есть сопротивление - это всегда между двумя точками цепи.

Ток существует в электрической цепи, а падение напряжения и сопротивление - это всегда участок цепи, всегда между двумя точками.

Для того, чтобы работать с этими параметрами электрической цепи, надо иметь возможность описать их количественно, точно так же как описывается масса, объем, длина и другие физические величины.

Вот стандартные единицы измерения для электрического тока, напряжения и сопротивления:

«Символ» - это обозначение физической величины в алгебраических уравнениях, на схемах, таблицах, технической документации, в дисциплинах физики и инженерии. Эти обозначения являются общепризнанными на международном уровне.

«Аббревиатура» - представляет собой алфавитный символ, который используется для сокращённой записи количества в единицах измерения. Своеобразная подкова Ω - это греческая буква «омега», именно ей и обозначают в электротехнике сопротивление.

Каждая единица измерения названа в честь известного исследователя электричества. Сила тока в честь француза Андре Мари Ампера, напряжение в честь Алессандро Вольта, и сопротивление в честь немецкого исследователя - Георга Симона Ома.

Закон Ома - взаимосвязь трёх величин

Все три величины: напряжение, ток и сопротивление, взаимосвязаны. Такую взаимосвязь обнаружил Георг Симон Ом и опубликовал в статье в 1827 году. Он математически исследовал гальваническую электрическую цепь.

Основным открытием Ома было то, что величина силы тока, проходящего через металлический проводник прямо пропорциональна напряжению, что и выразил он в виде математической записи - уравнения (формулы).


В этом алгебраическом выражении напряжение (V ) равно величине силе тока (I ) умноженной на сопротивление (R ). Используя алгебраические методы, мы можем манипулировать этим уравнением и записать его ещё в двух вариантах, для I и для R соответственно:

Формулировка Закона Ома для участка цепи имеет следующее содержание:

Сила тока, протекающего в участке цепи, прямо пропорциональна падению напряжения на этом участке, и обратно пропорциональна сопротивлению этого участка.

Важно помнить, что сила тока всегда в участке цепи (ветви), а падение напряжения и сопротивление - это всегда на участке цепи.

Не может быть силы тока на участке цепи, или падения напряжения и сопротивления в участке цепи, потому как это нелогично, абсурдно. Неверное употребление в речи и письме предлогов «в» и «на» говорит об отсутствии понимания сути основных электрических величин: напряжения, тока и сопротивления говорящим или пишущим.

Без правильного понимания сути физических явлений и величин, которые характеризуют электрическую цепь, невозможно профессионально выполнять электротехнические работы, и тем более выполнять инженерные расчёты.

Прямая пропорциональность говорит о том, что при увеличении напряжения V в n раз, сила тока I увеличится также в n раз, то же самое касается уменьшения величины напряжения.

Под напряжением на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка.

На рис. 13 изображен участок цепи, на котором есть резистор сопротивлением и нет ЭДС. Крайние точки этого участка обозначены буквами a и b . Пусть ток течет от точки a к точке b .

Рис. 13. Участок электрической цепи

На участке без ЭДС ток течет от более высокого потенциала к более низкому. Следовательно, потенциал точки a выше потенциала точки b на величину, равную произведению тока на сопротивление :

.

В соответствии с определением, напряжение между точками a и b

Другими словами, напряжение на резисторе равно произведению тока, протекающего по резистору, на величину сопротивления этого резистора.

В электротехнике разность потенциалов на концах резистора принято называть либо «напряжением на резисторе», либо «падением напряжения». В литературе встречаются оба этих определения.

Рассмотрим теперь вопрос о напряжении на участке цепи, содержащем не только резистор, но и источник ЭДС.

На рис. 14 а и б показаны участки некоторых цепей, по которым протекает ток . . Найдем напряжение между точками a и c для этих участков.


а) б)

Рис. 14. Участки электрической цепи

По определению

. (9)

Выразим потенциал точки a через потенциал точки c . При перемещении от точки c к точке b (рис. 14,а ) идем встречно ЭДС , поэтому потенциал точки b оказывается меньше, чем потенциал точки c на величину ЭДС , т.е.

. (10)

На рис. 14,б при перемещении от точки c к точке b идем согласно ЭДС и потому потенциал точки b оказывается больше, чем потенциал точки c на величину ЭДС , т.е.

. (11)

Ранее говорилось, что на участке цепи без ЭДС ток течет от более высокого потенциала к более низкому. Поэтому в обеих схемах рис. 14 потенциал точки a выше, чем потенциал точки b на величину падения напряжения на резисторе сопротивлением :

. (12)

Таким образом, для рис. 14,а имеем

, или

. (13)

И для рис. 14, б имеем

, или

. (14)

Положительное направление напряжения указывают на схемах стрелкой. Стрелка должна быть направлена от первой буквы индекса ко второй. Так, положительное направление напряжения изобразится стрелкой, направленной от a к c .

Из самого определения напряжения следует также, что . Поэтому . Другими словами, изменение чередования индексов равносильно изменению знака этого напряжения. Из изложенного ясно, что напряжение может быть и положительной, и отрицательной величиной.

  1. Закон Ома для участка цепи, не содержащего эдс.

Закон Ома устанавливает связь между током и напряжением на некотором участке цепи. Так, применительно к участку цепи, изображенному на рис. 13 имеем

.(15)

  1. Закон Ома для участка цепи, содержащего эдс.

Закон Ома для участка цепи, содержащего ЭДС, позволяет найти ток этого участка по известной разности потенциалов на концах этого участка и имеющейся на этом участке ЭДС . Так из уравнения (13) имеем для схемы рис. 14, а

.(16)

Аналогично из уравнения (14) для схемы рис. 14, б следует

.(17)

Уравнения (16) и (17) выражают собой закон Ома для участка цепи, содержащего ЭДС, для разных случаев включения ЭДС .

Под напряжением на некотором участке электрической цепи понимают разность потенциалов между крайними точками этого участка.

На рис. 1-13 изображен участок цепи, на котором есть резистор сопротивлением и нет ЭДС. Крайние точки этого участка обозначены буквами a и b . Пусть ток течет от точки a к точке b .

Рис. 1-13. Участок электрической цепи

На участке без ЭДС ток течет от более высокого потенциала к более низкому. Следовательно, потенциал точки a выше потенциала точки b на величину, равную произведению тока на сопротивление :

.

В соответствии с определением, напряжение между точками a и b

. (1-8)

Другими словами, напряжение на резисторе равно произведению тока, протекающего по резистору, на величину сопротивления этого резистора.

В электротехнике разность потенциалов на концах резистора принято называть либо «напряжением на резисторе», либо «падением напряжения». В литературе встречаются оба этих определения.

Рассмотрим теперь вопрос о напряжении на участке цепи, содержащем не только резистор, но и источник ЭДС.

На рис. 1-14 а и б показаны участки некоторых цепей, по которым протекает ток . . Найдем напряжение между точками a и c для этих участков.


а) б)

Рис. 1-14. Участки электрической цепи

По определению

. (1-9)

Выразим потенциал точки a через потенциал точки c . При перемещении от точки c к точке b (рис. 1-14,а ) идем встречно ЭДС , поэтому потенциал точки b оказывается меньше, чем потенциал точки c на величину ЭДС , т.е.

. (1-10)

На рис. 1-14,б при перемещении от точки c к точке b идем согласно ЭДС и потому потенциал точки b оказывается больше, чем потенциал точки c на величину ЭДС , т.е.

. (1-11)

Ранее говорилось, что на участке цепи без ЭДС ток течет от более высокого потенциала к более низкому. Поэтому в обеих схемах рис. 1-14 потенциал точки a выше, чем потенциал точки b на величину падения напряжения на резисторе сопротивлением :

. (1-12)

Таким образом, для рис. 1-14,а имеем

, или

. (1-13)

И для рис. 1-14, б имеем

, или

. (1-14)

Положительное направление напряжения указывают на схемах стрелкой. Стрелка должна быть направлена от первой буквы индекса ко второй. Так, положительное направление напряжения изобразится стрелкой, направленной от a к c .

Из самого определения напряжения следует также, что . Поэтому . Другими словами, изменение чередования индексов равносильно изменению знака этого напряжения. Из изложенного ясно, что напряжение может быть и положительной, и отрицательной величиной.

    1. Закон ома для участка цепи, не содержащего эдс

Закон Ома устанавливает связь между током и напряжением на некотором участке цепи. Так, применительно к участку цепи, изображенному на рис. 1-13 имеем

.(1-15)

Приступая к определению численного выражения напряжения тока, следует определиться с терминологией. Напряжение на участке электрической цепи характеризует выполняемую по переносу положительного единичного заряда работу (или же энергию, которая выделяется при перемещении оного заряда) из одной точки в другую. Начальная и конечная точки отличаются потенциалом, вследствие чего напряжение еще именуют разностью потенциалов или электродвижущей силой. Величина обозначается буквой U, ее измерение осуществляется в вольтах (B). Определить напряжение, имея в руках вольтметр, не составит труда. Однако, если данного прибора нет, то знание взаимосвязей между прочими характеристиками электрической схемы и напряжением помогут установить искомую величину.

Узнать напряжение тока через закон Ома

Имея числовые данные силы тока (I) и сопротивления (R), найти неизвестную составляющую, напряжение, поможет закон Ома. Его формула I=U/R. Она отражает прямо пропорциональную взаимосвязь напряжение-сила тока, и обратно пропорциональное соотношение напряжение-сопротивление на определенном участке цепи. Установленная закономерность справедлива для участков как постоянного, так и переменного тока. Взаимосвязь U=I*R – не фундаментальный закон. Она лишь показывает эмпирическое соотношение между величинами в определенных условиях.

Не всегда работает закон в таких случаях:

  • В некоторых гетерогенных приборах (диоды, транзисторы).
  • В случаях высоких частот.
  • При низких температурах (для сверхпроводников).
  • При явном нагреве элемента в процессе прохождения по нему тока (как в случае лампы накаливания).
  • В электронных лампах, содержащих вакуум или газ (люминесцентные лампы).
  • Касания проводника или диэлектрика высоким напряжением, повлекшее возникновение пробоя.

Физическая расшифровка закона Ома, чтобы узнать напряжение

«Классическое» представление закона не учитывает некоторых свойств проводящего материала, поэтому оно корректно лишь с математической точки зрения. Учесть физические характеристики проводника позволяет другая интерпретация закона: U=I*ℓ*ρ/S, где
I – сила тока,
ρ – удельное сопротивление проводника,
ℓ – длина,
S – поперечное сечение материала (площадь).

Определение напряжения, используя знание величины мощности

Георг Симон Ом установил следующую взаимосвязь между сопротивлением и мощностью: R=P/I 2 и R=U 2 /P, поэтому P=I*U. Из этого следует, что U=P/I.


Взаимосвязь с работой (A)

Исходя из определения напряжения, определить его численное выражение возможно, зная величину работы. Связь этих характеристик выражается в виде формулы U=A/q. Она определяет отношение работы тока к заряду, прошедшему по данному участку цепи.


Все характеристики, необходимые для вычисления напряжения, можно получить или из инструкций к электроприборам, или с помощью соответствующих измерительных приборов.



Поделиться: