Штрафы ростехнадзора для физических лиц. Штрафы ростехнадзора для юридических лиц

Классификация котлов

Котельные агрегаты разделяются на паровые, предназначенные для производства водяного пара, и водогрейные, предназначенные для получения горячей воды.

По виду сжигаемого топлива и соответствующего топливного тракта различают котлы для газообразного, жидкого и твердого топлива.

По газовоздушному тракту различают котлы с естественной и уравновешенной тягой и с наддувом. В котле с естественной тягой сопротивление газового тракта преодолевается под действием разности плотностей атмосферного воздуха и газа в дымовой трубе. Если сопротивление газового тракта (так же, как и воздушного) преодолевается с помощью дутьевого вентилятора, то котел работает с наддувом. В котле с уравновешенной тягой давление в топке и начале газохода поддерживается близким к атмосферному совместной работой дутьевого вентилятора и дымососа. В настоящее время стремятся все выпускаемые котлы, в том числе и с уравновешенной тягой, изготовлять газоплотными.

По виду пароводяного тракта различают барабанные (рис. 3.1, а, б )и прямоточные (рис. 3.1, в ) котлы. Во всех типах котлов через экономайзер 1 и пароперегреватель 6 вода и пар проходят однократно. В барабанных котлах многократно циркулирует пароводяная смесь в испарительных поверхностях нагрева 5 (от барабана 2 по водоопускным трубам 3 к коллектору 4 и барабану 2). Причем в котлах с принудительной циркуляцией (рис. 3.1, б ) перед входом воды в испарительные поверхности 5 устанавливают дополнительный насос 8. В прямоточных котлах (рис. 3.1, в ) рабочее тело по всем поверхностям нагрева проходит однократно под действием напора, развиваемого питательным насосом 7.

В котлах с рециркуляцией и комбинированной циркуляцией для увеличения скорости движения воды в некоторых поверхностях нагрева при пуске прямоточного котла или работе на пониженных нагрузках обеспечивают принудительную рециркуляцию воды специальным насосом 8 (рис. 3.1, г ).

По фазовому состоянию выводимого из топки шлака различают котлы с твердым и жидким шлакоудалением. В котлах с твердым шлакоудалением (ТШУ) шлак из топки удаляется в твердом состоянии, а в котлах с жидким шлакоудалением (ЖШУ) – в расплавленном.

Рис. 3.1. Схемы пароводяного тракта котла: а – барабанного с естественной циркуляцией;
б – барабанного с принудительной циркуляцией; в – прямоточного; г – прямоточного
с принудительной циркуляцией: 1 – экономайзер; 2 – барабан котла; 3 – водоопускные трубы;
4 – коллектор экранных труб; 5 – испарительные поверхности нагрева; 6 – пароперегреватель;
7 – питательный насос; 8 – циркуляционный насос



Водогрейные котлы характеризуют по их теплопроизводительности, температуре и давлению подогретой воды, а также по роду металла, из которого он изготовлен.

Водогрейные котлы бывают стальные и чугунные.

Чугунные котлы изготавливают для отопления отдельных жилых и общественных зданий. Их теплопроизводительность не превышает 1 – 1,5 Гкал/ч, давление – 0,3 – 0,4 МПа, температура – 115 о С. Стальные водогрейные котлы большой теплопроизводительности устанавливают в крупных квартальных или районных котельных, которые могут обеспечить теплоснабжение крупных жилых районов.

Паровые котельные агрегаты выпускаются различными по типу, паропроизводительности и параметрам производимого пара.

По паропроизводительности различают котлы малой производительности – 15 – 20 т/ч, средней производительности – от 25 – 35 до 160 – 220 т/ч и большой производительности от 220 – 250 т/ч и выше.

Под номинальной паропроизводительностью понимают наибольшую нагрузку (в т/ч или кг/с) стационарного котла, с которой он может работать в течение длительной эксплуатации при сжигании основного вида топлива или при подводе номинального количества теплоты при номинальных значениях пара и питательной воды с учетом допускаемых отклонений.

Номинальные значения давления и температуры пара – это параметры, которые должны быть обеспечены непосредственно перед паропроводом к потребителю пара при номинальной паропроизводительности котла (а температура также при номинальном давлении и температуре питательной воды).

Номинальная температура питательной воды – это температура воды, которую необходимо обеспечить перед входом в экономайзер или другой подогреватель питательной воды котла (или при их отсутствии – перед входом в барабан) при номинальной паропроизводительности.



По давлению рабочего тела различают котлы низкого (менее 1 МПа), среднего
(1 – 10 МПа), высокого (10 – 25 МПа) и сверхкритического давления (более 25 МПа).

Котельные агрегаты вырабатывают насыщенный или перегретый пар с температурой до 570 °С.

По назначению паровые котлы можно разделить на промышленные, устанавливаемые в производственных, производственно-отопительных и отопительных котельных, и энергетические, устанавливаемые в котельных тепловых электрических станций.

По типу компоновки котлы можно разделить на вертикально-циллиндрические, горизонтальной компоновки (с развитой испарительной поверхностью нагрева) и вертикальной компоновки.

Барабанные паровые котлы

Барабанные котлы широко применяют на ТЭС и в котельных. Наличие одного или нескольких барабанов с фиксированной границей раздела между паром и водой является отличительной чертой этих котлов. Питательная вода в них, как правило, после экономайзера 1 (см. рис. 3.1, а ) подается в барабан 2, где смешивается с котловой водой (водой, заполняющей барабан и экраны). Смесь котловой и питательной воды по опускным необогреваемым трубам 3 из барабана поступает в нижние распределительные коллектора 4, а затем в экраны 5 (испарительные поверхности). В экранах вода получает теплоту Q от продуктов сгорания топлива и закипает. Образующаяся пароводяная смесь поднимается в барабан. Здесь происходит разделение пара и воды. Пар по трубам, соединенным с верхней частью барабана, направляется в перегреватель 6, а вода снова в опускные трубы 3.

В экранах за один проход испаряется лишь часть (от 4 до 25 %) поступающей в них воды. Тем самым обеспечивается достаточно надежное охлаждение труб. Предотвратить накопление солей, осаждающихся при испарении воды на внутренней поверхности труб, удается благодаря непрерывному удалению части котловой воды из котла. Поэтому для питания котла допускается использование воды с относительно большим содержанием растворенных в ней солей.

Замкнутую систему, состоящую из барабана, опускных труб, коллектора и испарительных поверхностей, по которой многократно движется рабочее тело, принято называть контуром циркуляции, а движение воды в нем – циркуляцией. Движение рабочей среды, обусловленное только различием веса столбов воды в опускных трубах и пароводяной смеси в подъемных, называют естественной циркуляцией, а паровой котел – барабанным с естественной циркуляцией. Естественная циркуляция возможна лишь в котлах с давлением, не превышающим 18,5 МПа. При большем давлении из-за малой разности плотностей пароводяной смеси и воды устойчивое движение рабочей среды в циркуляционном контуре обеспечить трудно. Если движение среды в циркуляционном контуре создается насосом 8 (см. рис. 3.1, б ), то циркуляция называется принудительной , а паровой котел – барабанным с принудительной циркуляцией. Принудительная циркуляция позволяет выполнять экраны из труб меньшего диаметра как с подъемным, так и опускным движением среды в них. К недостаткам такой циркуляции следует отнести необходимость установки специальных насосов (циркуляционных), которые имеют сложную конструкцию, и дополнительный расход энергии на их работу.

Простейший барабанный котел, используемый для получения водяного пара, состоит из горизонтального цилиндрического барабана 1 с эллиптическими днищами, на 3/4 объема заполненного водой, и топки 2под ним (рис. 3.2, а ). Стенки барабана, обогреваемые снаружи продуктами горения топлива, играют роль теплообменной поверхности.

С ростом паропроизводительности резко возросли размеры и масса котла. Развитие котлов, направленное на увеличение поверхности нагрева при сохранении водяного объема, шло по двум направлениям. Согласно первому направлению увеличение теплообменной поверхности достигалось благодаря размещению в водном объеме барабана труб, обогреваемых изнутри продуктами сгорания. Так, появились жаротрубные (рис. 3.2, б ), затем дымогарные и, наконец, комбинированные газотрубные котлы. В жаротрубных котлах в водном объеме барабана 1 параллельно его оси размещены одна или несколько жаровых труб 3 большого диаметра (500 – 800 мм), в дымогарных – целый пучок труб 3 малого диаметра. В комбинированных газотрубных котлах (рис. 3.2, в ) в начальной части жаровых труб расположена топка 2, а конвективная поверхность выполнена из дымогарных труб 3. Производительность этих котлов была невелика, ввиду ограниченных возможностей размещения жаровых и дымогарных труб в водяном объеме барабана 1.Их использовали в судовых установках, локомобилях и паровозах, а также для получения пара на собственные нужды предприятия.

Рис. 3.2. Схемы котлов: а – простейшего барабанного; б – жаротрубного; в – комбинированного газотрубного; г – водотрубного; д – вертикально-водотрубного; е – барабанного современной конструкции

Второе направление в развитии котлов связано с заменой одного барабана несколькими, меньшего диаметра, заполненными водой и пароводяной смесью. Увеличение числа барабанов привело сначала к созданию батарейных котлов, а замена части барабанов трубами меньшего диаметра, расположенными в потоке дымовых газов, – к водотрубным котлам. Благодаря большим возможностям увеличения паропроизводительности это направление получило широкое развитие в энергетике. Первые водотрубные котлы имели наклоненные к горизонтали (под углом 10 – 15°) пучки труб 3, которые с помощью камер 4 присоединялись к одному или нескольким горизонтальным барабанам 1 (рис. 3.2, г ). Котлы такой конструкции получили название горизонтально-водотрубных . Среди них особо следует выделить котлы русского конструктора В. Г. Шухова. Прогрессивная идея, связанная с разделением общих камер, барабанов и трубных пучков на однотипные группы (секции) одинаковой длины и тем же числом труб, заложенная в конструкцию, позволила осуществлять сборку котлов разной паропроизводительности из стандартных деталей.
Но такие котлы не могли работать при переменных нагрузках.

Создание вертикально-водотрубных котлов – следующий этап развития котлов. Пучки труб 3, соединяющие верхние и нижние горизонтальные барабаны 1,стали располагать вертикально или под большим углом к горизонту (рис. 3.2, д ). Повысилась надежность циркуляции рабочей среды, обеспечился доступ к концам труб и тем самым упростились процессы вальцовки и очистки труб. Совершенствование конструкции этих котлов, направленное на повышение надежности и эффективности их работы, привело к появлению современной конструкции котла (рис. 3.2, е ):однобарабанного с нижним коллектором 5 небольшого диаметра; опускными трубами 6 и барабаном 1, вынесенными из зоны обогрева за обмуровку котла; полным экранированием топки; конвективными пучками труб с поперечным омыванием продуктами сгорания; предварительным подогревом воздуха 9, воды 8 и перегревом пара 7.

Конструктивная схема современного барабанного котла определяется его мощностью и параметрами пара, видом сжигаемого топлива и характеристиками газовоздушного тракта. Так, с ростом давления меняется соотношение между площадями нагревательных, испарительных и перегревательных поверхностей. Увеличение давления рабочего тела от
р = 4 МПа до р = 17 МПа приводит к уменьшению доли теплоты q, затраченной на испарение воды с 64 до 38,5 %. Доля теплоты, расходуемой на подогрев воды, увеличивается при этом с 16,5 до 26,5 %, а на перегрев пара – с 19,5 до 35 %. Поэтому с повышением давления растут площади нагревательной и перегревательной поверхностей, а площадь испарительной поверхности уменьшается.

В отечественных промышленных и промышленно-отопительных котельных широко распространены котельные агрегаты типа ДКВР (двухбарабанный котел, водотрубный, реконструированный) с номинальной паропроизводительностью 2,5; 4; 6,5; 10 и 20 т/ч, изготовляемые Бийским котельным заводом.

Котлы типа ДКВР (рис. 3.3 и 3.4) изготовляют в основном на рабочее давление пара
14 кгс/см 2 для производства насыщенного пара и с пароперегревателем для производства перегретого пара с температурой 250 °С. Кроме того, котлы паропроизводительностью 6,5 и 10 т/ч изготовляют на давление 24 кгс/см 2 для производства пара, перегретого до 370 °С, а котлы паропроизводительностью 10 т/ч также на давление 40 кгс/см 2 для производства пара, перегретого до 440 °С.

Котлы типа ДКВР выпускают в двух модификациях по длине верхнего барабана.
У котлов паропроизводительностью 2,5; 4,0 и 6,5 т/ч, а также у более ранней модификации котла паропроизводительностью 10 т/ч верхний барабан выполнен значительно более длинным, чем нижний. Барабаны соединены системой гнутых цельнотянутых стальных кипятильных труб наружным диаметром 51×2,5 мм, образующих развитую конвективную поверхность нагрева. Трубы расположены в коридорном порядке и своими концами завальцованы в барабаны. В продольном направлении трубы расположены на расстоянии между осями (шаг) 110, а в поперечном 100 мм.


Пароперегреватель в котлах типа ДКВР выполняют вертикальным змеевиковым из стальных цельнотянутых труб наружным диаметром 32 мм. Его размещают в начале котельного пучка, отделяя от камеры догорания двумя рядами кипятильных труб. Для того чтобы можно было разместить пароперегреватель, часть кипятильных труб не устанавливают. Трубный пучок и экраны в сборе с барабанами, коллекторами и опорной рамой этих котлов вписываются в железнодорожный габарит; это позволяет собирать металлическую часть котла на заводе и доставлять ее на монтажную площадку в собранном виде, что упрощает монтаж.

При установке котлов типа ДКВР с низкотемпературными поверхностями нагрева целесообразно предусматривать только водяной экономайзер либо только воздухоподогреватель, чтобы не усложнять компоновку и эксплуатацию котельного агрегата. Такое решение целесообразно еще и потому, что температура дымовых газов за котлами с развитыми поверхностями нагрева относительно низка и составляет приблизительно 250 – 300 °С, вследствие чего количество теплоты, уносимой дымовыми газами, относительно невелико. Более целесообразно устанавливать водяные экономайзеры, тогда агрегат получается компактным и простым в эксплуатации. При этом предпочтительнее выбирать чугунные ребристые экономайзеры, так как их изготовляют из недефицитного материала и они меньше страдают от коррозии.

Котлы типа ДКВР довольно чувствительны к качеству питательной воды, поэтому вода, используемая для их питания, должна подвергаться умягчению и деаэрации. Работа котельных установок с котлами типа ДКВР легко поддается автоматизации, особенно при сжигании жидкого и газообразного топлив.

Парогенераторы серии ДКВР хорошо компонуются со слоевыми топочными устройствами и первоначально были разработаны для сжигания твердого топлива. Позднее ряд парогенераторов перевели на сжигание жидкого и газообразного топлива. При работе на жидком и газообразном топливе производительность парогенераторов может быть выше номинальной на 30 – 50 % При этом нижняя часть верхнего барабана, расположенная над топочной камерой, должна быть защищена огнеупорным кирпичом или торкретом.

В ЦКТИ была обследована работа большого числа промышленных котельных, в которых эксплуатировались парогенераторы серии ДКВР. В результате обследования было установлено, что 85 % парогенераторов используют газ и мазут. Кроме того, были выявлены недостатки в работе парогенераторов: большие присосы воздуха в конвективную часть поверхности нагрева и водяной экономайзер, недостаточная степень заводской готовности, более низкие эксплуатационные КПД по сравнению с расчетными.

При разработке новой конструкции газомазутных парогенераторов серии ДЕ (рис. 3.5) особое внимание было обращено на увеличение степени заводской готовности парогенераторов в условиях крупносерийного производства, снижение металлоемкости конструкции, приближение эксплуатационных показателей к расчетным.

Во всех типоразмерах серии от 4 до 25 т/ч диаметр верхнего и нижнего барабанов парогенераторов принят равным 1000 мм. Толщина стенок обоих барабанов при давлении 1,37 МПа равна 13 мм. Длина цилиндрической части барабанов в зависимости от производительности изменяется от 2240 мм (парогенератор производительностью 4 т/ч) до 7500 мм (парогенератор производительностью 25 т/ч). В каждом барабане в переднем и заднем днище установлены лазовые затворы, что обеспечивает доступ в барабаны при ремонте.

Топочная камера от конвективной поверхности нагрева отделена газоплотной перегородкой.

Во всех парогенераторах серии предусмотрено двухступенчатое испарение. Во вторую ступень испарения выделена часть труб конвективного пучка. Общим опускным звеном всех контуров первой ступени испарения являются последние (по ходу продуктов сгорания) трубы конвективного пучка. Опускные трубы второй ступени испарения вынесены за пределы газохода.

Парогенератор производительностью 25 т/ч имеет пароперегреватель, обеспечивающий небольшой перегрев пара, до 225 °С.

Котельный агрегат типа ГМ-10 предназначается для производства перегретого пара с давлениями 1,4 и 4 МПа и температурами соответственно 250 и 440 °С. Котел предназначается для работы на природном газе и мазуте и отличается тем, что работает с наддувом, т. е. при избыточном давлении в топке. Это позволяет работать без дымососа.

Во избежание выбивания дымовых газов в окружающую среду котел выполнен с двойной стальной обшивкой. Через пространство, образуемое листами обшивки, проходит воздух, подаваемый дутьевым вентилятором, в результате чего через случайные неплотности в окружающую среду может выбиваться только холодный воздух.

По своей компоновке котел двухбарабанный асимметричный: кипятильный пучок и пароперегреватель размещены рядом с топкой. Топливо и воздух поступают в топку через комбинированные горелки, конструкция которых обеспечивает быстрый переход от сжигания одного вида топлива к сжиганию другого.

К атегория: Монтаж котлов

Поверхности нагрева

Трубно-барабанная система парового котла состоит из радиационных и конвективных поверхностей нагрева, барабанов и камер (коллекторов). Для радиационных и конвективных поверхностей нагрева используют бесшовные трубы, изготовленные из углеродистой качественной стали марок 10 или 20 (ГОСТ 1050-74**).

Радиационные поверхности нагрева выполняют из труб, размещаемых вертикально в один ряд по стенкам (боковой и задний экраны) или в объеме топочной камеры (фронтовой экран).

При низких давлениях пара (0,8…1 МПа) свыше 70% теплоты тратится на парообразование и лишь около 30 % - на нагревание воды до кипения. Радиационных поверхностей нагрева оказывается недостаточно для испарения заданного количества воды, поэтому часть испарительных труб размещают в конвективных газоходах.

Конвективными называются поверхности нагрева котла, получающие теплоту в основном конвекцией. Конвективные испарительные поверхности обычно выполняют в виде нескольких рядов труб, закрепленных верхними и нижними концами в барабанах или камерах котла. Эти трубы принято называть кипятильным пучком. К конвективным поверхностям нагрева относятся также пароперегреватель, водяной экономайзер и воздухоподогреватель.

Пароперегреватель - устройство для повышения температуры пара выше температуры насыщения, соответствующей давлению в котле. Пароперегреватель представляет собой систему змеевиков, соединенных на входе насыщенного пара с барабаном котла и на выходе - с камерой перегретого пара. Направление движения пара в змеевиках пароперегревателя может совпадать с направлением движения газового потока - прямоточная схема - или быть ему противоположным-протнвоточная схема.

Рис. 1. Трубная система парового котла: 1, 19- верхний и нижний барабаны, 2 - выход пара, 3 - предохранительный клапан, 4 - подвод питательной воды, 5 - манометр, 6 - водоуказа-тельная колонка, 7 - непрерывная продувка, 8 - водоспускные трубы фронтового экрана, 9 - водоспускные трубы боковых экранов, 10 - фронтовой экран, 11, 14 -- камеры боковых экра нов, 12 - дренаж (периодическая продувка) 13 - камера фронтового экрана, 15, 17 - боко вой и задний экраны, 16 - камера заднего экра на, 18 - водоспускные трубы заднего экрана 20 - продувка нижнего барабана, 21 - конвек тивный пучок труб

Рис. 2. Схемы включения пароперегревателя:
а - прямоточная, б - протнвоточная, в - смешанная

При смешанной схеме движения газов и пара (рис. 2, в), наиболее надежной в эксплуатации, змеевики входные (по ходу пара), в которых наблюдаются наибольшие отложения солей, и выходные с паром максимальной температуры отнесены в область умеренных температур.

В конвективном вертикальном пароперегревателе насыщенный пар, поступающий из барабана котла, подается в змеевики первой ступени 6, включенные по противоточной схеме, нагревается в них и направляется в регулятор перегрева - пароохладитель. Перегрев пара до заданной температуры происходит в змеевиках второй ступени, включенных по смешанной схеме.

Вверху змеевики пароперегревателя подвешены к балкам потолочного перекрытия котла, а внизу они имеют дистанционные крепления - планки 7 и гребенки 8. К промежуточной камере (пароохладителю) и к камере перегретого пара змеевики присоединяют сваркой.

Камеры пароперегревателя изготовляют из стальных труб диаметром 133 мм, а змеевики; 9 - из стальных труб диаметром 32, 38 или 42 мм со стенками толщиной 3 или 3,5 мм. При температуре стенок труб поверхностей нагрева до 500 °С материалом для змеевиков и камер (коллекторов) служит углеродистая качественная сталь марок 10 или 20. Последние по ходу пара змеевики пароперегревателя, которые работают при температуре стенок труб более 500 °С, выполнены из легированных сталей 15ХМ, 12Х1МФ.

Регулятор перегрева, в который пар поступает после пароперегревателя, представляет собой систему стальных змеевиков диаметром 25 или 32 мм, установленных в стальном корпусе и образующих два контура: левый и правый. По змеевикам прокачивается питательная вода в количестве, необходимом для охлаждения пара на заданную величину. Пар омывает змеевики с наружной стороны.

Экономайзер - устройство, обогреваемое продуктами сгорания топлива и предназначенное для подогрева или частичного испарения поступающей в котел воды. Водяные экономайзеры по конструкции делятся на стальные змееви-ковые и чугунные ребристые.

Стальные змеевиковые экономайзеры применяют для котлов, работающих при давлении свыше 2,3 МПа. Они представляют собой несколько секций, набранных из стальных змеевиков диаметром 28 или 32 мм со стенками толщиной 3 или 4 мм. Концы труб змеевиков вварены в расположенные вне обмуровки котла камеры диаметром 133 мм.

По характеру работы стальные змеевиковые экономайзеры бывают некипящего и кипящего типов. В экономайзерах неки-пящего типа питательная вода не догревается до температуры кипения, т. е. в них отсутствует парообразование. В экономайзерах кипящего типа допускается вскипание и частичное парообразование питательной воды. Из схемы включения экономайзеров некипящего и кипящего типов видно, что экономайзер кипящего типа не отделен от барабана котла запорным устройством и представляет с котлом единое целое.

Чугунные ребристые экономайзеры, используемые для котлов низкого давления, состоят из литых ребристых чугунных труб с квадратными ребрами. Чугунные трубы собирают в группы и соединяют между собой литыми калачами с фланцами. По системе труб питательная вода проходит вверх навстречу дымовым газам. Для очистки ребристых труб от золы и сажи между отдельными группами труб устанавливают обдувочные устройства.

Рис. 3. Конвективный вертикальный пароперегреватель парового котла средней мощности: 1 - барабан, 2--камера перегретого пара, 3 - промежуточная камера, выполняющая роль регулятора перегрева пара, 4 - балка, 5 - подвеска, 6. 9- змеевики, 7-планка, 8 - гребенка

Рис. 4. Регулятор перегрева: 1, 12 - камеры выхода и входа воды, 2 - штуцер, 3 - фланец с крышкой, 4 - подводящие пар трубы, 5 - опоры, 6 - корпус, 7 - отводящие пар трубы, 8 - металлическое корыто, 9 - дистанционная доска, 10 - змеевики, 11 - кожух

Преимущества чугунных экономайзеров: их повышенная сопротивляемость химическим разрушениям и меньшая стоимость по сравнению со стальными. Однако в чугунных экономайзерах из-за хрупкости металла не допускается образование пара, поэтому они могут быть только некипящего типа.

Стальные и чугунные водяные экономайзеры в современных котлах изготовляют в виде блоков; их поставляют в собранном виде.

Воздухоподогреватель - устройство для подогрева воздуха продуктами сгорания топлива перед подачей его в топку котла, состоящее из системы прямолинейных труб, концы которых закреплены в трубных досках, каркасной рамы и металлической обшивки. Воздухоподогреватели устанавливают в газоходе котла за экономайзером - одноступенчатая компоновка или в «рассечку» - двухступенчатая компоновка.

Барабан котла - это цилиндр, изготовленный из специальной котельной стали 20К или 16ГТ (ГОСТ 5520-79*), со сферическими днищами на торцах. С одной или двух сторон барабана расположены лазы овальной формы. Экранные, конвективные, опускные и пароотводящие трубы присоединяют к барабану с помощью развальцовки или сварки.

Рис. 5. Секция экономайзера: 1,2 - камеры входа и выхода воды, 3 - опорные стойки, 4 - змеевики, 5 - опорная балка

Рис. 6. Схемы включения экономайзера некипящего (а) и кипящего (б) типов: 1 - вентиль, 2 - обратный клапан, 3,7 - вентили для питания котла через и мимо экономайзера, 4 - предохранительный клапан, 5 - входная камера, 6 - экономайзер, 8 - барабан котла

Барабаны котлов малой и средней мощности изготовляют диаметром от 1000 до 1500 мм и толщиной стенки от 13 до 40 мм в зависимости от рабочего давления. Например, толщина стенок барабанов котлов типа ДЕ, работающих при давлении 1,3 МПа, равна 13 мм, а котлов, работающих при давлении 3,9 МПа,- 40 мм.

Внутри барабана размещаются питательное и сепарационные устройства, а также труба для непрерывной продувки. Арматуру и вспомогательные трубопроводы присоединяют к штуцерам, приваренным к барабану. Барабан, как правило, закрепляют на каркасе котла двумя роликовыми опорами, которые осуществляют его свободное перемещение при нагревании.

Рис. 7. Одноколонковый блочный экономайзер: 1 - блок, 2 - обдувочное устройство, 3 - коллектор (камера), 4 - соединительный калач, 5 - труба

Тепловые расширения трубно-барабанной системы котла обеспечивает конструкция опор барабанов и камер. Нижний барабан и камеры (коллекторы) экранов котлов имеют опоры, допускающие их перемещение в горизонтальной плоскости и исключающие движение вверх. А вся трубная система котла вместе с верхним барабаном, опирающимися на трубную систему, при тепловых расширениях может перемещаться только вверх.

У других котлов средней мощности неподвижными в вертикальной плоскости являются опоры верхних камер и барабанов.

Рис. 8. Воздухоподогреватель: 1,3 - верхняя и нижняя трубные доски, 2 - труба, 4 - рама, 5 - обшивка

Рис. 9. Компоновка конвективной шахты: а - одноступенчатая, 6 - двухступенчатая; 1 - воздухоподогреватель, 2 - водяной экономайзер, 3,7- водяные экономайзеры соответственно второй и первой ступени. 4 - опорная охлаждаемая балка водяного экономайзера, 5,9 - воздухоподогреватели соответственно второй и первой ступени, 6 - опорная балка воздухоподогревателя, 8 - компенсатор, 10 - колонна каркаса

Рис. 10. Роликовая опора барабана котла: 1- барабан, 2 - верхний ряд роликов, 3 - нижний ряд роликов, 4 - неподвижная подушка опоры, 5 - балка каркаса

В этом случае радиационные трубы вместе с нижними камерами перемещаются по вертикали вниз. Нижние камеры удерживаются от поперечных перемещений направляющими опорами, допускающими только вертикальный ход камер. Для того чтобы радиационные трубы не выходили из плоскости экрана, все трубы дополнительно закрепляют в несколько ярусов по высоте. Промежуточное крепление экранных труб по высоте в зависимости от конструкции обмуровки - неподвижное, связанное с каркасом, или подвижное - в виде поясов жесткости. Первый тип крепления используют при обмуровке, опирающейся на фундамент или каркас котла, второй - при натрубной обмуровке.

Свободное вертикальное перемещение трубы при ее креплении к каркасу котла обеспечивается за счет зазора в скобе, приваренной к трубе. Тяга, жестко закрепленная в каркасе, исключает выход трубы из плоскости экрана.

Рис. 11. Крепление труб поверхностей нагрева к каркасу, обеспечивающее их перемещение: а - по вертикали, б - по горизонтали; 1 - скоба, 2- труба, 3- защитное ребро, 4- тяга, 5 - закладная деталь, 6 - пояс жесткости



- Поверхности нагрева

Использование: в теплоэнергетике, в частности, при изготовлении парогенераторов. Сущность изобретения: повышение монтажной и ремонтной технологичности обеспечивается тем, что в конвективной поверхности нагрева, содержащей входной 1 и выходной 2 коллекторы, вертикально установленные обогреваемые трубы 3, дистанционирующие трубы 4, расположенные горизонтальными ярусами 5 на прямых вертикальных участках обогреваемых труб 4 и попарно жестко скреплены между собой по периферии конвективной поверхности, причем пара дистанционирующих труб 4 охватывает только один ряд обогреваемых труб 3. 4 ил.

Изобретение относится к теплоэнергетике и может быть использовано в парогенераторостроении. В процессе работы парогенератора, особенно на шлакующемся топливе или высокосернистом мазуте, на вертикальных поверхностях нагрева, размещенных, как правило, в горизонтальном газоходе, отлагается большое количество шлака. Очагами для интенсивной зашлаковки являются места, где уменьшены поперечные шаги между вертикальными трубами из-за выхода их из проектной плоскости (из ранжира). В этих местах резко уменьшается расход и скорость дымовых газов и это еще больше способствует зашлаковке поверхностей нагрева. Кроме того, наружные ранжировки труб, особенно в поперечном направлении движения греющих газов, ухудшают условия очистки обдувочными или другими устройствами. Применяемые в настоящее время различные неохлаждаемые устройства из жаростойких материалов быстро выгорают под воздействием высоких температур и агрессивных составляющих (серы, ванадия) греющих газов. Применение собственных, т.е. включенных параллельно с обогреваемыми трубами поверхности нагрева, дистанционирующих обогреваемых труб приводит к неравномерным условиям их работы, т.к. дистанционирующие трубы обязательно отличаются по длине и конфигурации от основных труб, что снижает надежность работы поверхности нагрева. Известна конструкция конвективной поверхности нагрева, в которой дистанционирование обогреваемых труб осуществляется неохлаждаемыми дистанционирующими планками из жаростойкого чугуна. Например, на котле ТГМП-204 Недостатком этой конструкции является недолговечность дистанционирующих планок, так как в условиях высоких температур газов и агрессивных составляющих продуктов горения топлива они быстро обгорают и разрушаются, что приводит к нарушению дистанций между обогреваемыми трубами поверхности нагрева, способствует заносу их золой и шлаком, ухудшению теплообмена и снижению надежности работы парогенератора. Наиболее близкой к заявленной является конструкция конвективной поверхности нагрева, содержащая входной и выходной коллекторы, вертикально расположенные обогреваемые трубы и горизонтальными ярусами установленные дистанционирующие трубы, охлаждаемые рабочей средой и снабженные шипами, образующими ячейки, в каждой из которых размещается по одной вертикальной трубе. В целом все дистанционирующие трубы, соединенные между собой шипами, образуют горизонтальную жесткую решетку, через которую пропускаются обогреваемые трубы поверхности нагрева Недостатком известной конструкции является сложность монтажа и низкая ремонтопригодность, состоящая в том, что при необходимости замены поврежденной обогреваемой трубы, размещенной в средней части вертикальной поверхности нагрева, совершенно невозможно раздвинуть обогреваемый вертикальные трубы для облегчения доступа к поврежденному месту. В равной мере это относится и к самим дистанционирующим трубам, снабженным шипами. Для доступа к поврежденному месту необходимо резать большое количество неповрежденных труб в доступных для этого местах с последующим восстановлением их. Опыт эксплуатации указанной поверхности на котлах ТГМП-204 подтверждает вышесказанное. Целью изобретения является устранение указанных недостатков, а также повышение монтажной и ремонтной технологичности. Поставленная цель достигается тем, что в конвективной поверхности нагрева, содержащей входной и выходной коллекторы, вертикально установленные обогреваемые трубы и дистанционирующие трубы, расположенные горизонтальными ярусами, дистанционирующие трубы в виде горизонтальных ярусов размещены на прямых вертикальных участках обогреваемых труб, попарно жестко соединенных между собой по периферии конвективной поверхности, причем каждая упомянутая пара охватывает только один ряд обогреваемых труб. Сущность изобретения поясняется чертежами, на которых изображено: на фиг. 1 общий вид конвективной поверхности нагрева, на фиг. 2 разрез по А-А фиг. 1, на фиг. 3 разрез по Б-Б на фиг. 2, на фиг. 4 разрез по В-В фиг. 2. Конвективная поверхность нагрева содержит входной 1 и выходной 2 коллекторы, вертикально установленные обогреваемые трубы 3, дистанционирующие трубы 4, выполненные в виде горизонтальных ярусов 5, размещенных на прямых участках труб 3 по высоте поверхности параллельно движению греющих газов и попарно охватывающих каждый ряд этих труб. Трубы 4 жестко соединены между собой сваркой 6 по периферии поверхности нагрева. Конвективная поверхность нагрева работает следующим образом. При изменении теплового состояния парогенератора дистанционирующие трубы 4 удерживают в одной плоскости каждый ряд обогреваемых труб 3, стремящихся из-за неравномерного обогрева выйти из ранжира. Сохранение ранжировки труб 3 обеспечивает равномерные скорости газов по всей ширине газохода, уменьшает возможность заноса золой его отдельных участков, а также улучшает условия очистки с помощью обдувочных или других приспособлений. Удержание обогреваемых труб 3 в ранжире значительно улучшает условия их осмотра и ремонта.,



Поделиться: