Понятие о жизн. цикле и поколениях у растений

  • СТРОЕНИЕ, КРОВОСНАБЖЕНИЕ И ИННЕРВАЦИЯ ПОЛОВОГО ЧЛЕНА И МОЧЕИСПУСКАТЕЛЬНОГО КАНАЛА. СТРОЕНИЕ, КРОВОСНАБЖЕНИЕ И ИННЕРВАЦИЯ МОШОНКИ
  • Факторы, формирующие половое поведение. Роль биологических и социальных факторов в формировании полового поведения.
  • У преобладающего большинства как высших, так и низших растений существует 2 способа размножения: бесполое и половое. Причем у каждого растения полный жизненный цикл его развития возможен только при наличии обоих способов размножения, кото­рые осуществляются в определенной очередности: один способ размножения чередуется с другим, и, следовательно, происходит определенное чередование, или смена, поколений - бесполого и полового.

    Сущность чередования поколений в цикле развития одного ра­стения заключается в том, что одно поколение образует органы полового размножения, а другое поколение - органы бесполого размножения. Поколение, образующее органы полового размноже­ния, в которых формируются половые клетки - гаметы, называ­ется половым поколением, или гаметофитом. Поколение, на котором образуются органы бесполого размножения, с развивающимися в них спорами, называется бесполым, или спорофитом.

    Очень ясно выражено развитие двух поколений у папоротников. У них оба поколения живут самостоятельно, причем у некоторых папоротников спорофит по размерам резко отличается от гаметофита (мужской папоротник). Бесполое поколение у этого папорот­ника представляет собой крупное растение, хорошо дпфферинцированное на отдельные органы, достигающие 80... 100 см и больше, а половое поколение (гаметофит) - очень маленькое растеньице в виде зеленой пластинки с 10-копеечную монету.

    Процесс чередования поколений мужского папоротника проходит следующим образом. На нижней стороне листа спорофита образу­ются специальные органы (спорангии), в которых формируются споры. Созревшие споры высыпаются и, попав в благоприятные условия, прорастают.



    Из споры вырастает маленькая зеленая пластинка, которая и представляет собой половое поколение, или гаметофит, папоротника. В данном случае это половое поколение носит специальное назва­ние - заросток. С нижней стороны заростка образуются мужские (антеридии) и женские (архегонии) половые органы. В антеридиях формируются мужские гаметы -спермато­зоиды, в архегониях образуются женские гаметы - я й ц е –клетки.

    После оплодотворения из образовавшейся зиготы развивается бесполое поколение папоротника - спорофит, т. е. вырастает обычное растение папоротника, на листьях которого снова обра­зуются споры. Жизненный цикл папоротника начинается снова.

    Таким образом, у мужского папоротника бесполое и половое поколения растут отдельно и питаются самостоятельно.

    У цветковых, которые эволюционно стоят выше рассмотренных растений, чередование поколений также существует, но оно выра­жено менее наглядно, так как у этих растений гаметофиты сильно редуцированы. У цветковых растений имеется 2 гаметофита - мужской (двуклеточное пыльцевое зерно) и женский (зародышевый мешок, содержащий 7 клеток). У этих растений гаметофит живет на бесполом поколении, которое представляет собой целое рас­тение, достигающее у некоторых представителей огромных раз­меров (береза, дуб и др.), тогда как женский и мужской гаме­тофиты у цветковых растений имеют микроскопически малую величину.



    Одновременно с чередованием поколений происходит смена ядер­ных фаз. Осуществляется это следующим образом. На бесполом поколении споры образуются в спорангиях из спорогенной ткани. При образовании спор происходит редукционное деление, и споры, следовательно, имеют гаплоидный набор хромосом. Образовав­шийся из споры гаметофит - половое поколение и сформировав­шиеся на нем гаметы также гаплоидны. При слиянии гаплоидных гамет на половом поколении образуется зигота, которая несет уже диплоидный набор хромосом. Гаплоидная фаза ядра сменилась диплоидной фазой. Из зиготы развивается бесполое поколение - спорофит - с диплоидным набором хромосом. Затем при образовании спор число хромосом снова уменьшается вдвое. Таким образом, гаметофит и спорофит различаются не только внешне, по и цитоло­гически: они имеют различное число хромосом.

    У более древних примитивных растений в цикле развития пре­обладает половое поколение - гаметофит (гаплоидная фаза). Более

    Рис. Чередование поколений у папоротника щитовника мужского:

    / - спорофит; 2 - часть листа с сорусами; 3. - сорус в разрезе; 4 - клетка, спорогенной ткани; 5 - редукционное деление; 6 - 2-е деление; 7 - тетрада; 8- споры; 9 - раскрыв­шийся спорангий; 10 - прорастающая спора; // - заросток (гаметофит); 12 - архегоний; /Л - антеридий; 14 - сперматозоид; 15 - проникновение сперматозоида в архегоний; 16 - деление зиготы; 17 - заросток с проростком молодого папоротника

    высокоорганизованным растениям, наоборот, свойственно при чередовании поколений преобладание бесполого поколения - спо­рофита (диплоидной фазы), что особенно ясно выражено у цветковых растений, у которых половое поколение претерпело сильную ре­дукцию.

    Чередование поколений имеет большое биологическое значе­ние, так как в нем сочетается 2 способа размножения: бесполое, дающее большое число особей, и половое, способствующее обога­щению наследственности потомства.

    Понятие «чередование поколений» следует считать условным, так как бесполое (спорофит) и половое (гаметофит) поколения, хотя у многих растений и представляют собой как бы самостоятельные организмы, в отдельности не могут обеспечить полного цикла раз­вития растения. Единый цикл развития растений осуществляется только в совокупности этих 2 поколений. Спорофит и гаметофит не представляют собой 2 самостоятельные особи одного и того же растения, а являются различными этапами его развития.

    ЛЕКЦИЯ 14. Вегетативные органы растений

    Закономерности строения вегетативных органов. Учение о метамарфозах. Органы аналогичные и гомологичные. Полярность и симметрия. Онтогенез семенного растения. Зародыш и проросток.

    Орган - это часть организма, имеющая определенное стро­ение и выполняющая определенные функции. Органы высших растений подразделяют на две группы: вегетативные и репродуктивные, или генеративные.

    Вегетативные органы составляют тело растения и выполняют основные функции его жизнедеятельности, т. е. служат для поддержания индивидуальной жизни данной конкретной особи, а иногда и ее вегетативного размножения. К ним относят корень, стебель и лист. Репродуктивные органы служат для воспроизведения особи в ряду последующих поколений. У покрытосеменных это цветок и его производные (семя и плод).

    У прокариот, низших растений и грибов вегетативных органов нет. Их тело, не дифференцированное на органы, называется слоевищем или талломом.

    В процессе эволюции расчленение тела высших растений на органы произошло в связи с переходом их из воды на сушу и приспособлением к условиям наземного существования.

    Теофраст (IV в. до н. э.) различал в вегетативном теле

    Рис. Полярность побегов ивы

    - черенок в нормальном положении; б - в перевернутом положении)

    высших растений три органа: стебель, лист и корень. Это подразделение сохраняется и в наше время, хотя морфо­логи считают более правиль­ным говорить о двух органах: побеге и корне, так как побег (стебель и лист) явля­ется производным одной вер­хушечной меристемы.

    Органам растений свойст­венны некоторые общие зако­номерности. Полярность - это различия между противопо­ложными полюсами организ­ма, органа или отдельной клетки. Полярность проявляется как во внешнем строении, так и в физиологических функциях.

    Морфологически верхняя часть растения называется апикаль­ной, нижняя - базальной. Физиологические различия между апикальной и базальной частями растения хорошо известны в садоводстве. При размножении растений черенками их сажают в почву морфологически нижним концом, в противном случае из части черенка, находящейся над почвой, разовьются придаточные корни, а в почве - побеги.

    Физиологические различия между полюсами растения нахо­дят свое выражение и в явлении тропизма. Тропизмы связаны с воздействием света, силы тяжести, химических и других факторов, сообразно которым их называют фототропизмом, геотропизмом, хемотропизмом и т. д. Если изгиб происходит в сторону раздражающего фактора, тропизм положительный, в противоположную сторону - отрицательный. Геотропизм - это способность органов растения ориентироваться в пространстве определенным образом. В каком бы положении ни лежало семя в почве, корень всегда растет вниз под действием земного притяжения (положительный геотропизм), а стебель - вверх (отрицательный геотропизм). Осевые органы - стебель и ко­рень - располагаются вертикально к поверхности земли (ортотропные органы), а листья - горизонтально или под углом (плагиотропные органы).

    Симметрия (соразмерность) - такое расположение частей предмета в пространстве, при котором плоскость симметрии рассекает его на зеркально подобные половины. Различным органам растений свойственна определенная симметрия.

    Радиальные (полисимметричные) органы - это органы, через которые можно провести три или более плоскостей симметрии (стебель, корень); билатеральные (бесимметричные) органы - можно провести только две плоскости симметрии (стебли кактусов опунций, листья ириса); моносимметричные - можно провести лишь одну плоскость симметрии (листья многих растений, цветок гороха); несимметричные (асимметричные) - нельзя провести ни одной плоскости симметрии (листья вяза, цветки валерианы, канны).

    Метаморфизированные (видоизмененные) органы - это такие, у которых под действием среды обитания или в зависимости от определенной функции произошли наследственно закреплен­ное усиление одной функции, сопровождающееся резким изменением формы, и потеря других. Метаморфизированные органы - это реальное выражение приспособительной эволюции. Их подразделяют на аналогичные и гомологичные.

    Аналогичные органы выполняют сходные функции и мор­фологически (в широком плане) подобны, но имеют разное происхождение (колючки, защищающие растения от уничтоже­ния животными и снижающие транспирацию в аридных областях, могут быть видоизмененными побегами, листьями и корнями). Сходство аналогичных органов связано с явлением конвергенции - развитием сходных признаков у разных органов в связи с приспособлением к сходным условиям внешней среды. Гомологичные органы различаются морфологически и часто выполняют различные функции, но имеют одинаковое проис­хождение, т. е. это видоизменение какого-либо одного орга­на - стебля, листа или корня.

    Зародыш семенных растений находится в семени. В нем уже заложены основные вегетативные органы. Он состоит из зародышевого корешка и зародышевого побега. Зародышевый корешок обычно представлен только конусом нарастания, прикрытым корневым чехликом. Зародышевый побег представлен зародышевым стебельком (осью) и зародышевыми листьями (семядолями) в числе двух (у двудольных), одной (у однодольных) или нескольких (у хвойных). На верхнем конце оси находится конус нарастания или уже почечка зародыша, в которой заложены зачатки следующих за семядолями листьев. Место сочленения оси и семядолей называют семядольным узлом. Участок оси под семядолями до

    Рис. Схема строения двудольного растения:

    а - молодой зародыш; б - зрелый зародыш; в - проросток; г - молодое растение; См - семядоли; Гп - гипокотиль; ГК - главный корень; БК - боковые корни; ПК - придаточ­ные корни; ЗК - зародышевый корешок; ВПч- верхушечная почка; БПч - боковые почки; КН - конус нарастания побега; Пкм - прокамбий; черным показаны очаги меристем, заштрихованы растущие части

    базальной части зародышевого корешка называют подсемя-дольным коленом (гипокотилем).

    При достаточном количестве влаги, тепла, воздуха и света зрелые семена прорастают. Первым обычно появляется заро­дышевый корешок, укрепляющий проросток в почве. Одновре­менно растет и гипокотиль, проталкивая корешок в почву. Семядоли в зависимости от типа прорастания ведут себя по-разному. В ходе развития проростка из зародышевого корешка образуется корень первого порядка, или главный корень. У большинства растений он довольно быстро начинает ветвиться: возникают боковые корни второго, третьего и в дальнейшем все более высоких порядков. Главный корень со всеми боковыми разветвлениями составляет систему главного корня. Параллельно этому из зародышевой почечки или конуса нарастания развивается побег первого порядка, или главный побег. В большинстве случаев при этом на апексе заклады­ваются новые листовые зачатки (примордии), ранее заложенные развертываются, а участки между ними разрастаются, образуя междоузлия. Участок стебля между семядолями и первым листом называют надсемядольным коленом (эпикотелем). В большинстве случаев главный побег в дальнейшем также ветвится, образуя боковые побеги второго, третьего и более высоких порядков. Формируется система главного побега. На гипокотиле и в нижних узлах стебля могут довольно рано образовываться придаточные корни. Таким образом, растение уже в относительно раннем возрасте представляет собой совокупность побеговой и корневой систем, связанных гипокотилем.

    Здравствуйте, уважаемые читатели блога репетитора ЕГЭ по биологии по Скайпу

    По названию этой статьи не всем даже понятно о чем пойдет речь, не правда ли?

    Но уверяю вас, что этот вопрос о чередовании поколений в мире живого важен для понимания того, как «обустроилась» .

    К тому же, судя по ответам учащихся на ЕГЭ, именно этот вопрос остается вовсе без ответа.

    Есть ли чередование поколений у растений

    Да, для водорослей и всех растений суши, размножающихся и спорами (мхи и папоротниковидные), и семенами (голосеменные и покрытосеменные), существует чередование двух стадий в их цикле развития, которые, может быть не совсем верно, называются «чередованием поколений».

    Давайте вспомним, как называются эти стадии. Спорофит и гаметофит. Почему они так называются?

    Спорофитом («споро» и «фит» — или «растение, образующее споры» ) называют: 1) ту часть жизненного цикла растения, которая завершается образованием бесполых структур — спор; 2) все клетки спорофита содержат нормальный (диплоидный) набор хромосом.

    Но, какое «но» надо обязательно помнить: споры, прежде, чем высыпаться из коробочки (у мхов) или из спорангия (у папоротников) или споры семенных растений (из которых потом формируются гаметофиты) — претерпевают или редукционное деление, становятся гаплоидными (n) . Поэтому, все клетки той структуры растения, которые сформируются из этих гаплоидных спор, будут, естественно, тоже гаплоидными.

    Теперь, относительно того, что надо знать про эту другую часть жизненного цикла растения, названную гаметофитом.

    Гаметофитом («гамето» и «фит» — или «растение, образующее гаметы» ) называют: 1) ту часть жизненного цикла растения, которая завершается образованием половых структур — гамет;2) все клетки гаметофита содержат половинный (гаплоидный) набор хромосом.

    И здесь нам снова следует обратить внимание на одно большое «НО»: как формируются половые структуры на гаметофите — гаметы ? Поскольку все клетки гаметофита формируются из гаплоидных спор, значит они образуются митозами , то и специальные половые клетки — гаметы на нем тоже образуются митозами — они ведь сразу гаплоидные (у животных же, мы помним, гаметы образуются мейотическим или редукционным делением).

    Таким образом, у растений не только гаметы (половые клетки), являются гаплоидными (n), но и бесполые клетки — споры , тоже являются гаплоидными.

    Почему же тогда споры — это бесполые клетки, а гаметы — половые клетки

    Каждая гаплоидная спора (одна) не сливаясь ни с какой другой клеткой, то есть сама по себе, прорастая, образует новый организм (вернее другую жизненную стадию организма), генетически идентичную наследственному аппарату этой одной споры.

    Таким образом, спора, являясь продуктом спорофита, сама образует будущий гаметофит. Такое размножение и называется бесполым.

    Ткани гаметофита гаплоидные (они же развились из гаплоидных спор), из них формируются гаметы. Каждая гаплоидная гамета не образует новый организм . Только после стадии оплодотворения её другой гаметой, после объединения генетического материала (n) женской и (n) мужской гамет, образуется диплоидная (2n) зигота. Именно эта диплоидная зигота и даст начало новому будущему диплоидному организму (спорофиту).

    Таким образом, гаметы, являясь продуктом гаплоидного гаметофита, только сливаясь попарно (мужские с женскими) обеспечат дальнейшее развитие организма. Поэтому такое размножение, в котором участвуют два партнера называется половым.

    Что же является спорофитом и гаметофитом у споровых (водоросли, мхи и папоротниковидные) и семенных растений (голосеменные и покрытосеменные)

    Мы подошли к ответу на вопрос, который вызывает наибольшую путаницу. Так вот, у водорослей и мхов, основным (доминирующим) поколением в цикле развития является гаметофит. А у папоротниковидных (хотя они тоже относятся к споровым растениям) и всех семенных растений основным поколением является спорофит.

    Цикл чередования поколений у водорослей разберем на примере нитчатой зеленой водоросли улотрикса. На рисунке из школьного учебника мы видим, что улотрикс может размножаться как бесполым, так и половым путем. Значит взрослое растение улотрикса можно считать спорогаметофитом. При благоприятных условиях улотрикс (n) размножается бесполым путем четырехжгутиковыми зооспорами (n) . При неблагоприятных условиях улотрикс (n) размножается половым путем, образуя двухжгутиковые гаметы (n) . После копуляции (слияния) гамет образуется четырехжгутиковая зигота (2n) .

    Зигота вначале плавает, затем оседает на дно, теряет жгутики, вырабатывает плотную оболочку и слизистую ножку, которой прикрепляется к субстрату. Это покоящийся спорофит.

    После периода покоя происходит редукционное деление ядра зиготы (мейоз) и в ней образуются или безжгутиковые споры (n), или зооспоры (n) , что зависит от вида улотрикса (а их 25 видов), Из этих спор (или зооспор) снова формируются взрослые растения улотрикса — спорогаметофиты .

    У мха кукушкин лен ,

    взрослое вегетирующее растение является гаметофитом (n), образующимся из зеленой нити — протонемы (предростка) — (n).

    Кукушкин лен — раздельнополое растение. На рисунке показано, что после оплодотворения (n + n), на женском гаметофите формируются коробочки со спорами (2n).

    Коробочка на ножке — это стадия спорофита в цикле развития кукушкина льна. Споры в коробочках формируются в результате мейоза. Затем уже гаплоидные споры (n) высыпаются из коробочки наружу и из них образуется зеленая нить — протонема (п) .

    Таким образом, мы видим, что у мхов как и у водорослей в цикле чередования поколений стадия гаметофита является преобладающей над спорофитом.

    А у папоротников и всех семенных растенийих основной жизненной формой, самим вегетирующим растением является спорофит

    На рисунке ниже показана схема изменения соотношения гаметофита (n) и спорофита (2n) в процессе эволюции растений, Красная линия, разделяет изображения спорофитов (выше линии) и гаметофитов (ниже линии) у разных групп растений.

    На рисунке мы видим, что только у водорослей и мхов стадия гаметофита (n) является преобладающей. У папоротников гаметофит представлен маленьким заростком, а у голосеменных и покрытосеменных вообще редуцирован до микроскопических размеров.

    Казалось бы, поскольку папоротники как и мхи споровые растения, то у них чередование поколений должно происходить сходным со мхами образом. Но оказывается все наоборот: у споровых папоротников цикл чередования поколений (имеется в виду, какая форма представляет собой само взрослое вегетирующее растение) сходен с циклом чередования поколений у семенных растений.

    Что бы этот факт легче запомнился, следует указать, что мхи — тупиковая ветвь эволюции царства растений. И, что именно от папоротниковидных произошли все современные семенные растения (только семенные растения произошли не от ныне живущих споровых папоротников, а от вымерших папоротников, у которых уже было семенное размножение).

    Есть ли чередование поколений у животных

    Да, есть. Но, если чередование поколений характерно почти для всех представителей то в царстве животных это скорее исключение, чем правило.

    Смысл термина «чередование поколений» у животных тот же, что и у растительных организмов. Только здесь неприемлемы термины «гаметофит» и «спорофит». Хотя чередование поколений у животных — это тоже смена жизненных фаз организма половой и бесполой.

    РАЗМНОЖЕНИЕ РАСТЕНИЙ

    Л е к ц и я 22

    ТИПЫ РАЗМНОЖЕНИЯ РАСТЕНИЙ

    Размножение - характерное свойство всех живых существ.

    Вегетативное размножение. Бесполое размножение. Половое

    Размножение. Значение полового процесса.

    Чередование поколений

    Размножение - характерное свойство всех живых существ . Размножение столь же обязательно, как рост, раздражимость, наследственность и др. Сущность размножения состоит в том, что каждый организм воспроизводит себе подсобные особи. Благодаря чему поддерживается существование вида. В основе процесса размножения лежит способность клеток к делению и дифференциации.

    Как разнообразны живые существа, так разнообразны и способы размножения. Но отличия касаются главным образом деталей процесса. По основным же принципиальным признакам различают три способа размножения растений – вегетативное размножение, бесполое и половое.

    Вегетативное размножение . Этот тип размножения свойствен высшим и низшим растениям. Образование новых особей при вегетативном размножении происходит за счет вегетативных органов, частей вегетативного тела.

    Примером вегетативного, размножения является размножение некоторых одноклеточных растений путем деления клетки на две дочерние. Так размножаются хлорелла, хлорококк, пиннулярия и многие другие одноклеточные водоросли. Вегетативное размножение происходит при почковании дрожжей. Дрожжи - одноклеточные грибы, вегетативно размножаются очень быстро, отделяя от клетки ее меньшую часть. Такой способ размножения называется почкованием.

    У многоклеточных водорослей вегетативное размножение происходит обрывками нитей или обломками слоевищ (например, у спирогиры, кладофоры).

    Очень разнообразны способы вегетативного размножения у цветковых растений. Новые особи вида развиваются за счет вегетативных органов.

    Корни многих растений дают придаточные почки, из которых развиваются новые побеги. Со временем они укореняются и продолжают существование как самостоятельные растения. Корневыми черенками и в форме корневой поросли размножаются малина, крыжовник, осот, вьюнок, одуванчик и многие другие растения.

    Листья реже образуют придаточные почки. Иногда почки развиваются из опавших листьев, реже - на растении. В последнем случае растения называются живородящими. Размножаться с помощью листьев могут сердечник, глоксинии, определенные папоротники, бегония, бриофиллум, лилии, гиацинты и некоторые другие виды.

    Обрывками и обломками стеблей - стеблевыми черенками - в природе размножаются кактусы, элодея, роголистник, ряска и пр. Искусственным же путем стеблевыми черенками размножается громадное число растений: яблони, груши, ивы, смородина, виноград, розы, хризантемы и т. д.


    Для вегетативного размножения служат также видоизмененные побеги - клубни, луковицы, корневища - и усы и плети. В связи с такой функцией меняется их морфологическое и анатомическое строение.

    Характерной особенностью вегетативного размножения является то, что в потомстве очень полно и точно воспроизводятся свойства и признаки материнского растения. Семенное же потомство цветковых растений не всегда повторяет признаки родительских форм, оно очень изменчиво и разнообразно. Многие ценные сортовые качества при семенном воспроизведении утрачиваются. По этой причине вегетативное размножение широко применяется в сельскохозяйственной практике, особенно в плодоводстве и цветоводстве. Размножение яблонь, груш, роз путем прививок - один из вариантов искусственного вегетативного размножения.

    Бесполое размножение . Оно характеризуется тем, что для воспроизведения потомства образуются специализированные гаплоидные клетки, так называемые споры. Каждая спора, попадая в благоприятные условия, дает начало новой особи.

    Спор представляет собой клетку с более или менее плотной оболочкой. Содержимое ее – цитоплазма, ядро, митохондрии, пластиды или пропластиды – обычные компоненты живой клетки. Кроме того, споры содержат запасные питательные вещества - капли масла, кристаллы белка, крахмал, сахар.

    Споры водных растений имеют жгутики, с помощью которых активно передвигаются в воде. Такие споры называются зооспорами. Споры наземных растений и некоторых водных без жгутиков. Они разносятся ветром или током воды. Называются собственно спорами или апланоспорами. (от греч. а - нет, pianos - путешествие).

    Споры образуются в обычных вегетативных клетках материнского организма или в специальных многоклеточных образованиях - спорангиях. Многоклеточные спорангии свойственны наземным растениям. Прочные стенки спорангия защищают споры и спорогенную ткань от высыхания. У водорослей спорангии устроены проще, поскольку засуха этим растениям не угрожает.

    Уодноклеточных растений, например у хламидомонады, споры образуются путем деления содержимого клетки на несколько частей. Каждая часть протопласта еще внутри материнской клетки покрывается собственной оболочкой и оформляется как самостоятельная клетка. Затем оболочка материнской клетки ослизняется, слизь вымывается током воды, образуется отверстие, через которое выплывают споры. Каждая из них дает начало новой хламидомонаде. Спор образуется 4-8.

    У высших растений при образовании спор происходит редукционное деление (меиоз), поэтому споры у этих растений являются гаплоидными клетками.

    Для бесполого размножения характерны: очень высокая интенсивность размножения; одно растение образует тысячи и тысячи спор; очень однородное потомство, все особи которого почти повторяют признаки и свойства материнского растения.

    Как видно из этой характеристики, бесполое и вегетативное размножение имеет много общего. Именно и в том и другом случае в образовании потомства участвует только одинорганизм и по этой причине образуется очень однородное, малоизменчивое потомство. Эти признаки сближают вегетативное и бесполое размножение. Отличаются же они тем, что при бесполом размножении образуются специальные органы размножения, а при вегетативном этого не происходит - новые особи развиваются из вегетативных органов. Различия, как видно, касаются деталей, главные же признаки бесполого и вегетативного размножения общие, поэтому они иногда объединяются в общий тип бесполого размножения и рассматриваются как варианты этого процесса.

    Половое размножение . Этот тип размножения существенно отличается от бесполого и имеет важное биологическое значение для эволюции вида.

    При половом процессе образуются специальные клетки полового размножения - половые клетки или гаметы (от греч. gametes - супруг), В отличии от спор каждая отдельная гамета не может дать начала новой особи, этому процессу предшествует процесс слияния двух гамет – оплодотворение. Клетка, которая образуется в результате оплодотворения, называется зиготой (от греч. zygo. - ярмо).

    Морфологически зигота характеризуется тем, что имеет два набора хромосом, т. е. является диплоидной. Зигота отличается высокой физиологической активностью. После некоторого периода покоя или без него она энергично делится, делятся и ее производные в результате чего формируется многоклеточное тело. Конечный результат развития зиготы – образование новой особи.

    Гаметы редко, только у некоторых низших растений, принадлежат одному организму. Но и в этом случае они не вполне тождественны. Чаще копулируют (сливаются) гаметы, образованные разными особями. Морфологически они могут быть одинаковыми, но отличаются физиологически.

    Различают три формы полового процесса. Половой процесс называется изогамным (от греч. isos - равный, gamos - брак), если гаметы одинаковы. В этом случае гаметы морфологически не дифференцированы на мужские и женские. Их формы и размер одинаковы, они подвижны. Половой процесс называется гетерогамным (от греч. heteros - разный, gamos - брак), если гаметы отличаются и размерами и по форме, но сохраняют подвижность. Изогамия наблюдается, например, у хлорококка, кладофоры, гетерогамия - у эудорины; обе формы полового процесса наблюдаются у разных видов хламидомонады.

    У громадного большинства растений гаметы дифференцированы на мужские и женские. Они отличаются своими размерами, строением и функциями. Женская гамета - крупная, неподвижная клетка, в ней сохраняется некоторый запас питательных веществ.Она называется яйцеклеткой. Отсюда и название процесса оогамия (греч. ооп - яйцо). Мужские гаметы - очень мелкие и подвижные клетки, с одним, двумя или многими жгутиками. Они называются сперматозоидами (от греч sperma - семя, zoon - животное). Типичные гаметы - гаплоидные клетки. Редукция числа хромосом происходит в результате мейоза, который у животных организмов имеет место непосредственно при образовании гамет, а у растений - в иной фазе цикла развития. При образовании зиготы в результате оплодотворения восстанавливается двойное число хромосом.

    Гаметы образуются в гаметангиях: женские – в архегониях, мужские – в антеридиях. Строение этих органов варьирует в широких пределах и изучается в курсе систематики низших растний.

    Значение полового процесса . Половое размножение не отличается высокой интенсивностью. Значение его в другом.

    В результате полового процесса образуется более жизнеспособное «обновленное» потомство. Наследственная основа у зиготы, конечно, богаче, чем у каждой отдельной гаметы или споры. Поэтому в результате полового процесса развивается более разнообразное, более изменчивое и пластичное потомство. Относительная выживаемость полового потомства выше. Поскольку в нем ярко проявляется индивидуальная изменчивость, становится возможным существование в сравнительно разнообразных условиях. Расширяется ареал вида, появляются новые разновидности. Ярко выраженная индивидуальная изменчивость дает богатый материал для естественного отбора. Все эти предпосылки обеспечивают биологический прогресс вида.

    Таким образом, если половой процесс почти не увеличивает численность вида, то он улучшает его «качество» - повышает его жизнеспособность. Этими результатам половой процесс принципиально отличен от бесполого.

    При бесполом размножении количество особей значительно увеличивается, зато в качественном отношении нет никаких сдвигов. Признаки материнского поколения в бесполом потомстве повторяются почти неизменными. Как видно, половой и бесполый процессы дополняют друг друга, поэтому большинству видов свойственно чередование поколений.

    Чередование поколений . Суть явления заключается в том, что в цикле развития каждого вида последовательно чередуются формы размножения и ядерные фазы. Если отправной точкой считать оплодотворение и, следовательно, образование зиготы, то цикл развития выглядит следующим образом.

    Из зиготы развивается особь, которая состоит из диплоидных клеток (диплонт) и размножается бесполым путем, образуя споры. По этому признаку такой организм называется спорофитом (от греч. sporus – заросток и phyton – растение). Споры - гаплоидные клетки, при их образовании происходит редукция числа хромосом. С момента образования спор начинается гаплоидная фаза цикла развития. Развивающаяся из споры особь состоит из гаплоидных клеток (гаплонт) и размножается половым путем, образуя гаметы. По этой причине гаплонт иначе называется гаметофитом (от греч. gametes - супруг и phyton). В результате оплодотворения вновь образуется зигота, и цикл развития повторяется.

    В цикле развития выделяются два узловых момента, в которых, происходит смена ядерных фаз: мейоз, типичный при образовании спор, в результате чего диплоидная фаза сменяется гаплоидной, и оплодотворение, при котором гаплоидная фаза сменяется диплоидной.

    У разных видов в зависимости от их эволюционной подвинутости чередование поколений осуществляется в разной форме.

    А. У многих водорослей диплоидна лишь зигота. Первое же ее деление - мейоз. Следовательно, вся вегетативная жизнь вида проходит в гаплоидной фазе. Такой жизненный цикл называется гаплонтным. Он присущ многим зеленым водорослям (хламидомонада, улотрикс, спирогира).

    Б. Вид представлен особями морфологически одинаковыми, но отличающимися цитофизиологически. Часть из них - диплонты, другие - гаплонты. Первые образовались из зиготы, размножаются спорами, т. е. представляют собой спорофиты. Вторые образовались из спор размножаются половым путем, образуя гаметы, т. е. представляют собой гаметофиты. Поскольку оба поколения морфологически одинаковы, цикл развития таких растений называется изоморфным диплогаплонтным (диктиота типа бурых водорослей, ульва из типа зеленых).

    В. У некоторых видов, таких немного, гаплоидны лишь гаметы, а вся вегетативная жизнь вида осуществляется в диплоидной фазе. Такой жизненный цикл называется диплонтным (фукус из типа бурых водорослей).

    Г. У громадного большинства растений гаплоидная и диплоидная фазы развиты неодинаково, преобладает одна из них, чаще диплоидная, вторая, гаплоидная, редуцирована. Поскольку диплоидная и гаплоидная фазы морфологически неравны, цикл развития называется гетероморфным диплогаплонтным.

    Низшие растения обнаруживают огромное разнообразие форм размножения и циклов развития. Большинство высших растений имеет гетероморфный диплогаплонтный цикл развития. В типичных случаях спорофит (диплонт) представляет собой морфологически хорошо развитое зеленое автотрофное растение, которое прикрепляется к почве и существует самостоятельно. Гаметофит (гаплонт) часто утрачивает способность к самостоятельному существованию, развивается на спорофите и питается за его счет, т. е. гетеротрофно.

    Чередование поколений - биологически важное явление, способствующее выживанию вида в борьбе за существование. Рассмотрим размножение и чередование поколений на конкретных примерах.

    Организмам, размножающимся только половым путем, характерно чередование гаплоидной и диплоидной фаз в их развитии. У многих организмов, включая млекопитающих, это чередование имеет регулярный характер, и на нем основано сохранение видовых признаков организмов. Диплоидия способствует накоплению разных аллелей. Напротив, для организмов, которые могут размножаться как половым, так и бесполым путем, характерно чередование (смена) поколений, когда одно или несколько бесполых поколений организмов сменяется поколением организмов, размножающихся половым путем.

    Различают первичное и вторичное чередование поколений. Первичное чередование поколений отмечается у организмов, развивших в ходе эволюции половой прогресс, но сохранивших способность к бесполому размножению, и заключается в регулярном чередовании полового и бесполого поколений (рис. 87). Оно встречается у животных (простейших), у водорослей и у всех высших растений. У простейших классическим примером первичного чередования поколений является бесполое размножение малярийного плазмодия в организме человека (шизогония) и половое - в организме малярийного комара. У растений половое поколение представлено гаметофитом, бесполое - спорофитом. Механизм первичного чередования заключается в том, что на растениях спорофитного поколения развиваются споры, которые на основе мейоза дают гаплоидные мужские и женские гаметофиты. На последних развиваются спермии и яйцеклетки. Оплодотворение яйцеклетки дает начало диплоидному спорофиту. Таким образом, клетки гаметофита содержат гаплоидный набор хромосом, а спорофита - диплоидный набор, т. е. у растений чередование поколений связано со сменой гаплоидного и диплоидного состояний.

    Если проследить за соотношением между спорофитом и гаметофитом у растений разного уровня организации, то можно увидеть, что в ходе эволюции развитию подвергался спорофит, тогда как для гаметофиты была характерной редукция. Например, у мхов преобладающим является гаметофит (гаплоидное поколение), на котором живет спорофит. Но уже у папоротникообразных преобладающим является спорофит (диплоидное поколение) в виде хорошо развитого растения со стеблями и корнями, а гаметофит представлен слоем клеток, которые образуют пластину, прикрепляющуюся к почве с помощью ризоидов. Далее, у голосеменных гаметофит уменьшается до небольших количеств клеток, а у покрытосеменных мужской гематофит представлен лишь двумя клетками, женский - семью, тогда как спорофитом у голосеменных являются деревья (сосна, ель и другие), а покрытосеменных - деревья, кустарники, травы.

    Между гаметофитом и спорофитом могут быть как сходства по морфологии и продолжительности жизни, так и различия по этим признакам. В первом случае это называют изоморфным чередованием поколений, во втором - гетероморфным.



    Вторичное чередование поколений широко встречается у животных. Оно отмечается в формах гетерогонии и метагенеза. Гетерогония заключается в первичном чередовании полового процесса и партеногенеза. Например, у трематод половое размножение регулярно сменяется партеногенезом. У многих других организмов гетерогония зависит от сезона. Так, коловратки, дафнии и тли осенью размножаются путем зигогенеза (путем оплодотворения яйцеклеток и образования зигот), а летом - путем партеногенеза. Метагенез заключается в чередовании полового размножения и вегетативного (бесполового). Например, гидры размножаются обычно почкованием, но при понижении температуры образуют половые клетки. У кишечнополостных на некоторых стадиях развития происходит переход от полового размножения к вегетативному. У некоторых морских кишечнополостных полипоидное поколение правильно чередуется с медузоидным. Для полипоидного поколения характерно размножение так называемой стробиляцией (поперечными перетяжками), для медузоидного - половым путем (оплодотворение яиц, образование личинок и развитие полипов).

    Растениям свойственно биологическое явление, называемое чередованием поколений. Чередование поколений описывает жизненный цикл растения, как оно изменяется между половой и бесполой фазами (поколениями). Половая фаза растений, производящая , или называется поколение гаметофит. Бесполая фаза образует и называется поколение спорофит. Каждое поколение развивается от другого, продолжая циклический процесс. , включая водоросли также проявляют такой тип жизненного цикла.

    Размножение растений и животных

    Растения и некоторые животные способны размножатся как , так и . При бесполом размножении потомство является точной копией родителя. Разные типы бесполого размножения, обычно встречающиеся у обоих растений и животных, включают партеногенез (потомство развивается из неоплодотворенного яйца), почкование (потомство развивается, через почку на теле родителя), а также фрагментация (потомство развивается из части или фрагмента родителя). Половое размножение включает в себя объединение (клеток, содержащих только один набор ), чтобы образовать (содержащую два набора хромосом).

    У многоклеточных животных жизненный цикл состоит из одного поколения. Диплоидный организм вырабатывает гаплоидные половые клетки посредством . Все остальные клетки тела диплоидные и продуцируются . Новый диплоидный организм создается путем слияния мужских и женских половых клеток во время оплодотворения. У диплоидных организмов нет чередования поколений между гаплоидной и диплоидной фазами.

    В растительных многоклеточных организмах жизненные циклы варьируются между диплоидными и гаплоидными фазами. В диплоидной (спорофитной) фазе продуцируются гаплоидные споры через мейоз. По мере развития гаплоидных спор через митоз, умноженные клетки образуют гаплоидную структуру гаметофитов. Гаметофит представляет собой гаплоидную фазу цикла. После созревания гаметофит производит мужские и женские гаметы (половые клетки). Когда гаплоидные гаметы объединяются, они образуют диплоидную зиготу. Зигота развивается через митоз, образуя новый спорофит. Таким образом, в отличие от животных, растительные организмы могут чередоваться между диплоидными (спорофитами) и гаплоидными (гаметофитными) поколениями.

    Сосудистые и несосудистые растения

    Чередование поколений наблюдается как у сосудистых, так и несосудистых растений. Сосудистые растения содержат систему сосудистой ткани, которая транспортирует воду и питательные вещества по всему телу растения. Несосудистые растения не имеют такой системы и нуждаются во влажных местах обитания для выживания. К ним относятся мхи, ан­то­це­ро­то­вид­ные и печёночные мхи. Эти растения выглядят как зеленые маты растительности с выступающими из них стебельками. Первичной фазой жизненного цикла несосудистых растений является генерация гаметофитов. Фаза гаметофит состоит из зеленой мшистой растительности, а фаза спорофит состоит из удлиненных стеблей со спорангиями на концах.

    Первичной фазой жизненного цикла сосудистых растений является генерация спорофитов. В сосудистых растениях, которые не производят семена, такие как папоротники и хвощи, поколения спорофитов и гаметофитов независимы. Например, у папоротников ветвь с листьями представляют собой зрелое диплоидное образование спорофитов. Спорангии на нижней стороне листьев вырабатывают гаплоидные споры, которые прорастают для образования гаплоидных гаметофитов папоротника (проталлий). Эти растения процветают во влажных условиях, так как вода необходима для оплодотворения.

    Сосудистые растения, которые производят семена, не всегда зависят от влажных сред обитания для размножения. Семена защищают развивающиеся эмбрионы. Как в цветковых, так и в нецветковых растениях (хвойных) генерация гаметофитов полностью зависит от доминирующих поколений спорофит. В цветущих растениях репродуктивная структура - цветок. Цветок производит как мужские микроспоры, так и женские мегаспоры.

    Сами микроспоры содержатся в пыльце и вырабатываются в тычинке растения, развиваясь в мужские половые клетки. Женские мегаспоры производятся в пестики растений и развиваются в женские гаметы. Во время опыления пыльца переносится ветром, насекомыми или другими животными в женскую часть цветка. Мужские и женские гаметы объединяются и развиваются в семя, а завязь образует плод. У хвойных, пыльца производится в мужских шишках, а в женских шишках после формируется зародыш.



    Поделиться: