В устойчивой коллоидной системе превалируют силы притяжения. Устойчивость дисперсных систем

Основным методом очистки природных и сточных вод от мелкодисперсных, эмульгированных, коллоидных и окрашенных примесей (1 и 2 группы) является коагуляция и флокуляция. Методы основаны на агрегировании частиц дисперсной фазы с последующим их удалением из воды механическим отстаиванием.

Эффективность и экономичность процессов коагуляционной очистки сточных вод определяется устойчивостью дисперсной системы, которая зависит от ряда факторов: степени дисперсности, характера поверхности частиц, плотности частиц, величины электрокинетического потенциала, концентрации, наличия в сточной воде других примесей, например, электролитов, высокомолекулярных соединений.

Существуют различные способы проведения коагуляции, целесообразность применения которых зависит от факторов обусловливающих агрегативную устойчивость систем.

Агрегативная устойчивость коллоидных систем зависит от их строения.

Обладая большой удельной поверхностью, коллоидные частицы способны адсорбировать из воды ионы, вследствие чего соприкасающиеся фазы приобретают заряды противоположного знака, но равные по величине. В результате на поверхности возникает двойной электрический слой. Ионы относительно прочно связанные с дисперсной твердой фазой называют потенциалопределяющими . Они нейтрализуются избытком противоионов . Толщина двойного слоя в водных растворах не превышает 0,002 мм.

Степень адсорбции ионов зависит от сродства адсорбируемых ионов к поверхности, их способности образовывать недиссоциируемые поверхностные соединения. При адсорбции ионов одинаковой валентности адсорбционная способность повышается с увеличением радиуса иона и, соответственно, его поляризуемости, т.е. способности притягиваться к поверхности коллоидной частицы. Увеличение радиуса иона сопровождается также уменьшением его гидратации, наличие плотной гидратной оболочки препятствует адсорбции, т.к. уменьшает электрическое взаимодействие иона с поверхностью коллоидной частицы.

Согласно современным представлениям о строении двойного электрического слоя слой противоинов состоит из двух частей. Одна часть примыкает к межфазной поверхности и образует адсорбционный слой, толщина которого равна радиусу составляющих его гидратированных ионов. Другая часть противоионов находится в диффузном слое, толщина которого зависит от свойств и состава системы. В целом мицелла электронейтральна. Строение мицеллы – коллоидной частицы – представлено на рис.1.1.

Разность потенциалов между потенциалопределяющими ионами и всеми противоионами называется термодинамическим φ-потенциалом.

Заряд на частицах препятствует их сближению, чем, в частности, и определяется устойчивость коллоидной системы. В целом устойчивость коллоидных систем обусловлена наличием заряда у гранулы, диффузионного слоя и гидратной оболочки.



Рис.3.1. Строение мицеллы: Рис.3.2. Схема двойного электрического

I – ядро мицеллы; слоя в электрическом поле

II – адсорбционный слой; (I-II – гранула);

III – диффузионный слой;

IV – гидратная оболочка

При движении частицы в дисперсной системе или при наложении электрического поля часть противоионов диффузного слоя остается в дисперсной среде и гранула приобретает заряд, соответствующий заряду потенциалопределяющих ионов. Таким образом, дисперсионная среда и дисперсная фаза оказываются противоположно заряженными.

Разность потенциалов между адсорбционным и диффузным слоями противоионов называется электрокинетическимζ – потенциалом (рис. 1.2).

Электрокинетический потенциал является одним из важнейших параметров двойного электрического слоя. Величина ζ – потенциала обычно составляет единицы и десятки милливольт в зависимости от состава фаз и концентрации электролита. Чем больше величина ζ– потенциала, тем более устойчива частица.

Рассмотрим термодинамические и кинетические факторы устойчивости дисперсных систем:

· Электростатический фактор устойчивости . С позиции физической кинетики молекулярное притяжение частиц является основной причиной коагуляции системы (ее агрегативной неустойчивости). Если на коллоидных частицах образовался адсорбционный слой, имеющий ионную природу, то при достаточном сближении одноименно заряженных частиц возникают электростатические силы отталкивания. Чем толще двойной электрический слой, тем интенсивнее результирующая сила отталкивание частиц, тем больше высота энергетического барьера и тем меньше вероятность слипания частиц. Таким образом, устойчивость коллоидных систем в присутствии ионного стабилизатора зависит от свойств двойного электрического слоя.

· Сольватационный фактор устойчивости . Силы отталкивания могут быть вызваны существованием на поверхности сближающихся частиц сольватных (гидратных) оболочек или так называемых граничных фаз, состоящих лишь из молекул дисперсионной среды и обладающих особыми физическими свойствами. Ядро мицеллы нерастворимо в воде, следовательно, и не гидратировано. Ионы, адсорбированные на поверхности ядра, и противоионы двойного электрического слоя гидратированы. Благодаря этому вокруг ядра создается ионно-гидратная оболочка. Толщина ее зависит от распределения двойного электрического слоя: чем больше ионов находится в диффузном слое, тем больше и толщина гидратной оболочки.

· Энтропийный фактор устойчивости. Обусловлен тепловым движением сегментов молекул ПАВ, адсорбированных на коллоидных частицах. При сближении частиц, имеющих адсорбционные слои из молекул ПАВ или высокомолекулярных веществ, происходит сильное уменьшение энтропии адсорбционного слоя, что препятствует агрегированию частиц.

· Структурно-механический фактор устойчивости. Адсорбционно-сольватные слои ПАВ могут представлять собой структурно-механический барьер, препятствующий сближению частиц. Защитные слои противоионов-стабилизаторов, являясь гелеобразными, обладают повышенной структурной вязкостью и механической прочностью.

· Гидродинамический фактор устойчивости . Скорость коагуляции может снижаться благодаря изменению вязкости среды и плотности дисперсной фазы и дисперсионной среды.

· Смешанные факторы наиболее характерны для реальных систем. Обычно агрегативная устойчивость обеспечивается несколькими факторами одновременно. Особенно высокая устойчивость наблюдается при совокупности действия термодинамических и кинетических факторов, когда наряду со снижением межфазного натяжения проявляются структурно-механические свойства межчастичных прослоек.

Необходимо иметь в виду, что каждому фактору устойчивости соответствует специфический метод его нейтрализации. Например, действие электростатического фактора значительно снижается при введении в систему электролитов, которые сжимают двойной электрический слой.

Сольватация при сольватационном факторе может быть исключена лиофобизацией частиц дисперсной фазы с помощью адсорбции соответствующих веществ. Действие структурно-механического фактора можно снизить с помощью веществ, разжижающих и растворяющих упругие структурированные слои на поверхности частиц.

Дестабилизация системы может быть вызвана различными причинами, результатом многих из них является сжатие диффузного слоя, а следовательно, и уменьшение значения ζ-потенциала. Сжатие диффузного слоя уменьшает и степень гидратации ионов, в изоэлектрическом состоянии (ζ= 0, мВ) гидратная оболочка вокруг ядра предельно тонка (10 -10 м) и не защищает мицеллы от слипания при столкновении, в результате начинается агрегация частиц.

Седиментационная устойчивость коллоидных систем (СУ) – способность дисперсной системы сохранять равномерное распределение частиц по всему объему) обусловлена броуновским движением коллоидных дисперсий и диффузией частиц дисперсной фазы.

Седиментационная устойчивость системы зависит от действия двух факторов, направленных взаимно противоположно: силы тяжести, под действием которой частицы оседают, и диффузии, при которой частицы стремятся к равномерному распределению по объему. В результате возникает равновесное диффузионно-седиментационное распределение частиц по высоте, зависящее от их размера.

Диффузия замедляется с увеличением размера частиц. При достаточно высокой степени дисперсности частиц броуновское движение, как движение диффузионное, приводит к выравниванию концентраций по всему объему. Чем меньше частицы, тем больший срок требуется для установления равновесия.

Скорость оседания частиц пропорциональна квадрату их диаметра. В грубодисперсных системах скорость достижения равновесия сравнительно большая и равновесие устанавливается в течение нескольких минут или часов. В тонкодисперсных растворах она мала, и до момента равновесия проходят годы или даже десятки лет.

Виды коагуляции

В современной теории коагуляции дисперсных систем разработанной Дерягиным, Ландау, Фервеем, Овербеком (теория ДЛФО) степень устойчивости системы определяется из баланса молекулярных и электростатических сил. Различают два типа коагуляции:

1) концентрационную, при которой потеря устойчивости частиц связана со сжатием двойного слоя;

2) нейтрализационную (коагуляция электролитами), когда наряду со сжатием двойного слоя уменьшается потенциал φ 1 .

Концентрационная коагуляция характерна для сильно заряженных частиц в высококонцентрированных растворах электролитов. Чем выше потенциала φ 1 ДЭС, тем сильнее противоионы притягиваются к поверхности частиц и своим присутствием экранируют рост электрического поля. Поэтому при высоких значениях φ 1 силы электростатического отталкивания между частицами не возрастают безгранично, а стремятся к некоторому конечному пределу. Этот предел достигается при φ 1 более 250 мв. Отсюда следует, что взаимодействие частиц с высоким φ 1 -потенциалом не зависит от величины этого потенциала, а определяется только концентрацией и зарядом противоионов.

По мере увеличения концентрации электролита величина ζ – потенциала (ДП) снижается, а φ 1 практически сохраняет свое значение (рис. 3.3).

Под устойчивостью дисперсных систем понимают неизменность их свойств и состава во времени, в том числе дисперсности фазы, межчастичного взаимодействия. Здесь рассматриваются вопросы устойчивости систем по отношению к укрупнению или агрегации частиц дисперсной фазы, к их осаждению. Ликвидация агрегативной устойчивости необходима в процессах выделения осадков при разделении фаз, при очистке сточных вод и промышленных выбросов.

По классификации П.А. Ребиндера дисперсные системы делят на лиофильные, получающиеся при самопроизвольном диспергировании одной из фаз, и лиофобные, получающиеся при принудительном диспергировании и конденсации с пересыщением. Лиофобные системы обладают избытком поверхностной энергии, в них самопроизвольно могут идти процессы укрупнения частиц, т.е. может происходить снижение поверхностной энергии за счет уменьшения удельной поверхности. Такие системы и называют агрегативно неустойчивыми.

Агрегация частиц может заключаться в переносе вещества от мелких частиц к крупным, так как химический потенциал последних меньше /изотермическая перегонка/. Крупные частицы растут, а мелкие частицы постепенно растворяются /испаряются/. Агрегация частиц может происходить и путем слипания /слияния/ частиц – наиболее характерный путь для дисперсных систем /коагуляция/.

Различают термодинамические и кинетические факторы агрегативной устойчивости дисперсных систем. Движущей силой коагуляции является избыточная поверхностная энергия. Основными факторами, влияющими на устойчивость систем, являются факторы, снижающие поверхностное натяжение при сохранении размера поверхности. Эти факторы относят к термодинамическим. Они уменьшают вероятность эффективных соударений частиц, создают потенциальные барьеры, замедляющие или даже исключающие процесс коагуляции. Чем меньше поверхностное натяжение, тем больше термодинамическая устойчивость системы.



Кинетические факторы связаны в основном с гидродинамическими свойствами среды: замедление сближения частиц, разрушение прослоек среды между частицами. В целом, различают следующие факторы устойчивости дисперсных систем:

1. Гидродинамический – из-за изменения вязкости среды и плотности фазы и дисперсионной среды снижается скорость коагуляции;

2. Структурно – механический фактор обусловлен наличием на поверхности частиц упругой, механически прочной пленки, разрушение которой требует затрат энергии и времени;

3. Электростатический – из-за возникновения двойного электростатического слоя/ДЭС/ на поверхности частиц уменьшается межфазное натяжение. Появление электрического потенциала на межфазной поверхности возможно из-за поверхностной электролитической диссоциации или адсорбции электролитов;

4. Энтропийный фактор проявляется в системах, в которых частицы или их поверхностные слои участвуют в тепловом движении. Сущность его состоит в стремлении дисперсной фазы к равномерному распределению по объему системы;

5. Адсорбционно-сольватный – проявляется в уменьшении межфазного натяжения вследствие адсорбции и сольватации при взаимодействии частиц с дисперсионной средой.

В реальных системах агрегативная устойчивость определяется одновременно совокупностью термодинамических и кинетических факторов.

Согласно современным представлениям устойчивость систем (лиофобных коллоидов) определяется балансом сил молекулярного притяжения и электростатического отталкивания между частицами. Универсальным свойством дисперсных систем является наличие на границе раздела фаз двойного электрического слоя (ДЭС).

Поверхностный заряд частиц образуется в результате одного из процессов:

– диссоциации поверхностных групп частиц;

– адсорбции потенциалопределяющих ионов, т.е. ионов, входя щих в состав кристаллической решетки или сходных с ними;

– адсорбции ионогенных ПАВ;

– изоморфного замещения, например, заряд частиц большинства глин формируется за счет замещения четырехвалентных ионов кремния на Аl +3 или Са +2 , с дефицитом положительного заряда на частице.

В первых трех случаях поверхностный заряд можно контролировать, в определенных пределах регулировать величину заряда, знак, изменяя концентрацию ионов в системе. Например, в результате диссоциации поверхностных силанольных групп частицы кремнезема могут приобретать заряд:

Плотность поверхностного заряда равна числу элементарных зарядов на единице поверхности. Поверхностный заряд частицы в дисперсной системе компенсируется суммой зарядов, локализованных в диффузной и плотной (непосредственно прилегающей части монослоя противоионов) частях ДЭС.

Явление возникновения разности потенциалов при осаждении дисперсной фазы получило название потенциала седиментации /оседания/. При относительном перемещении фаз независимо от причин, вызывающих перемещение, происходит разрыв ДЭС по плотности скольжения. Плоскость скольжения обычно проходит по диффузному слою ДЭС, и часть его ионов остается в дисперсионной среде. В результате дисперсионная среда и ее дисперсная фаза оказываются противоположно заряженными. Потенциал, возникающий на плоскости скольжения при отрыве части диффузного слоя, называется электрокинетическим потенциалом, или z /дзета/-потенциалом. Дзета-потенциал, отражая свойства ДЭС, характеризует природу фаз и межфазного взаимодействия. Величина электрокинетического потенциала зависит от скорости движения фаз, вязкости среды, природы фаз и других факторов. Понижение температуры, введение в систему электролитов, специфически взаимодействующих с поверхностью, увеличение заряда ионов электролита приводит к уменьшению дзета-потенциала.

Величина дзета-потенциала зависит от природы поверхности контактирующих фаз. На поверхностях полиэлектролитов, содержащих ионогенные группы, а так же на поверхности многих неорганических оксидов величина дзета-потенциала может достигать высоких значений - 100 мВ и более. Если на поверхности адсорбируются противоионы, то электрокинетический потенциал уменьшается. Значительное влияние оказывает величина рН среды, так как ионы Н + и ОН – обладают высокой адсорбционной способностью. Знак и значение дзета-потенциала широко используются для характеристики электрических свойств поверхностей при рассмотрении агрегативной устойчивости дисперсных систем.

В первом приближении принято считать, что устойчивость дисперсных систем определяется величиной электрокинетического z (дзета) потенциала. При добавлении к системам электролитов или ПАВ происходит изменение структуры ДЭС, изменение величины z – потенциала при неизменной величине поверхностного потенциала. Это изменение (уменьшение) наиболее значительно с ростом заряда противоиона при одинаковой концентрации электролита (рис.2.1).

Высокозарядные противоионы /Al +3 ,Fe +3 /, сложные органические ионы вследствие действия вандерваальсовых сил могут адсорбироваться сверхэквивалентно, т.е. в количествах, превышающих число зарядов на поверхности, накапливаясь в слое. В результате этого возможно изменение и величины, и знака электрокинетического потенциала. С такими явлениями часто встречаются при введении в дисперсные системы полиэлектролитов и коагулянтов.

В дисперсных системах при сближении одинаково заряженных частиц происходит их отталкивание, что не является чисто кулоновским, так как заряд поверхности полностью компенсирован зарядом противоионов. Силы отталкивания появляются при перекрывании диффузных ионных атмосфер. В тоже время между частицами действует вандерваальсово притяжение, состоящее из ориентационных, индукционных и дисперсионных сил. В определенных условиях эти силы соизмеримы с силами отталкивания. Полная энергия взаимодействия дисперсных частиц слагается из суммы энергий притяжения и отталкивания. Величина суммарной энергии частиц от расстояния между ними схематически показана на рис.2.2.

Рис.2.1. Зависимость величины z - потенциала от концентрации противоионов. На кривых указан заряд противоиона

Устойчивость дисперсных систем и коагуляция отражают непосредственно взаимодействие частиц дисперсной фазы между собой или с какими-либо макроповерхностями. В основе теории устойчивости лежит соотношение между силами притяжения и отталкивания частиц. Широкое признание получила теория устойчивости, впервые предложенная Б.В. Дерягиным и Л.Д. Ландау, учитывающая электростатическую составляющую расклинивающего давления (отталкивания) и его молекулярную составляющую (притяжение).

В упрощенном варианте общая энергия взаимодействия между двумя частицами, приходящаяся на единицу площади, равна

Е=Е пр +Е от. (2.1)

Рис.2.2. Зависимость энергии взаимодействия частиц (Е общ) от расстояния между ними (L ), Е общ =Е притяж +Е отталк

Каждую из этих составляющих можно выразить как функцию от расстояния между частицами

dЕ пр =Р пр dh, (2.2)

dE от =Р от dh, (2.3)

где Р пр – давление притяжения, т.е. молекулярная составляющая расклинивающего давления; Р от – давление отталкивания, в данном случае электростатическая составляющая расклинивающего давления.

Давление притяжения обусловлено обычно стремлением системы к уменьшению поверхностной энергии, его природа связана с ван-дер-ваальсовыми силами. Давление отталкивания обусловлено только электростатическими силами, поэтому

dР от = d , (2.4)

где - объемная плотность заряда в ЭДС, - электропотенциал двойного слоя.

Если частицы находятся на расстояниях, на которых взаимодействие не происходит, то ДЭС не перекрываются, и потенциалы в них практически равны нулю. При сближении частиц ДЭС перекрываются, в результате потенциалы значительно увеличиваются вплоть до 2 и силы отталкивания возрастают.

В области малых значений потенциалов электростатическая составляющая давления сильно зависит от значения потенциала, с ростом же потенциала эта зависимость становится менее заметной. Энергия отталкивания частиц возрастает с уменьшением расстояния h между ними по экспоненциальному закону.

Энергия притяжения частиц согласно упрощенному уравнению 2.5.обратно пропорциональна квадрату расстояния между ними.

Р пр = - , (2.5)

где n – число атомов в единице объема частицы; К – константа, зависящая от природы взаимодействующих фаз;

Энергия притяжения между частицами значительно медленнее уменьшается с расстоянием, чем энергия притяжения между молекулами (атомами). Отсюда следует, что частицы дисперсных систем взаимодействуют на более далеких расстояниях, чем молекулы.

Устойчивость дисперсных систем или скорость коагуляции зависит от знака и значения общей потенциальной энергии взаимодействия частиц. Положительная энергия отталкивания Е от с увеличением h уменьшается по экспоненциальному закону, а отрицательная Е пр обратно пропорциональна квадрату h. В результате на малых расстояниях (при h®0, Е от ®const, E пр ® ) и на больших расстояниях между частицами преобладает энергия притяжения, а на средних – энергия электростатического отталкивания.

Первичный минимум I (рис 2.2) отвечает непосредственному слипанию частиц, а вторичный минимум II – их притяжению через прослойку среды. Максимум, соответствующий средним расстояниям, характеризует потенциальный барьер, препятствующий слипанию частиц. Силы взаимодействия могут распространяться на расстояния до сотен нм, а максимальное значение энергии может превышать 10 -2 Дж/м 2 . Увеличению потенциального барьера способствует рост потенциала на поверхности частиц в области его малых значений. Уже при 20 мВ возникает потенциальный барьер, обеспечивающий агрегативную устойчивость дисперсных систем.

В различных отраслях промышленности встречаются дисперсные системы, содержащие разнородные частицы, отличающиеся химической природой, знаком и величиной поверхностного заряда, размерами. Агрегацию таких частиц (коагуляцию) называют гетерокоагуляцией. Это наиболее общий случай взаимодействия частиц при крашении, флотации, образовании донных отложений, осадков сточных вод. Термином взаимная коагуляция обозначают более частный случай – агрегацию разноименно заряженных частиц.

Процесс взаимной коагуляции широко используют на практике для разрушения агрегативной устойчивости дисперсных систем, например, при очистке сточных вод. Так, обработка сточных вод при определенных условиях солями алюминия или железа вызывает быструю коагуляцию взвешенных отрицательно заряженных веществ, взаимодействующих с положительно заряженными частицами гидроксидов алюминия и железа, образующимися при гидролизе солей.

Лиофильные коллоиды характеризуются интенсивным взаимодействием дисперсных частиц со средой и термодинамической устойчивостью системы. Решающая роль в стабилизации лиофильных коллоидов принадлежит сольватным слоям, формирующимся на поверхности дисперсной фазы в результате полимолекулярной адсорбции молекул растворителя. Способность сольватной оболочки препятствовать слипанию частиц объясняют наличием у нее сопротивления сдвигу, мешающему выдавливанию молекул среды из зазора между частицами, а также отсутствием заметного поверхностного натяжения на границе сольватного слоя и свободной фазы. Стабилизации дисперсных систем способствует введение в систему ПАВ. Неионные ПАВ, адсорбируясь на гидрофобных дисперсных частицах, превращают их в гидрофильные и увеличивают устойчивость золей.

Агрегативная устойчивость/неустойчивость системы зависит от возможности контакта частиц; для слипания частицы должны сблизиться на определенное расстояние. В теории агрегативной устойчивости, известной под названием теория ДЛФО (первые буквы фамилий авторов теории: Б. В. Дерягин и Л. Д. Ландау, Россия, и Э. Фервей и Дж. Т. Овербек, Голландия), рассматривается совместное действие сил притяжения и сил отталкивания между частицами.

Исторический экскурс

Борис Владимирович Дерягин - выдающийся ученый, внесший неоценимый вклад практически в каждый раздел коллоидной химии. Исследуя свойства глинистых суспензий, он установил, что тонкие слои воды между отдельными частицами суспензии обладают свойствами, отличными от свойств воды в объеме, в том числе расклинивающим давлением, препятствующим сближению частиц. Совместное рассмотрение сил притяжения и отталкивания объясняло устойчивость системы. Эти исследования наряду с количественными расчетами и выявлением критерия устойчивости были опубликованы Б. В. Дерягиным совместно с Львом Давидовичем Ландау в нескольких научных статьях 1935-1941 гг.; за рубежом об этих работах узнали значительно позже.

Голландские ученые Э. Фервей (Vervey) и Дж.Т. Овербек (Overbek) также занимались исследованиями в этой области. Э. Фервей в 1934 г. защитил диссертацию, посвященную изучению двойного электрического слоя и стабильности лиофобных коллоидов. Позднее им была опубликована серия статей, где рассматривается действие электрических сил и сил Лондона - Ван-дер-Ваальса между коллоидными частицами, находящимися в растворе электролита. А в 1948 г. в соавторстве с Овербеком вышла его монография «Теория стабильности лиофобных коллоидов» .

Вопрос о научном приоритете относительно создания теории разрешился признанием заслуг всех четырех авторов.

Силы притяжения - это силы межмолекулярного взаимодействия (силы Лондона - Ван-дер-Ваальса). Силы притяжения, возникающие между отдельными атомами, проявляются на очень малых расстояниях порядка атомных размеров. При взаимодействии частиц вследствие аддитивности дисперсионных сил притяжение между частицами проявляется на значительно больших расстояниях. Энергия притяжения обратно пропорциональна квадрату расстояния между частицами:

Силы отталкивания между частицами имеют электростатическую природу. Электростатическая энергия отталкивания, возникающая при перекрытии диффузных слоев, уменьшается с увеличением расстояния по экспоненте:

В приведенных выше формулах для энергий притяжения и отталкивания А * - константа Гамаксра; х - расстояние между частицами; е - диэлектрическая проницаемость дисперсионной среды; е° = 8,85 К) 12 Ф/м - электрическая постоянная; (р^ - потенциал диффузного слоя; А. - толщина диффузного слоя двойного электрического слоя (ДЭС).

Подробнее о строении ДЭС, включающего адсорбционный и диффузный слои, см. в параграфе 4.3.

Энергии притяжения присваивают знак «минус», энергии отталкивания - знак «плюс». Энергии притяжения и отталкивания рассматриваются в теории ДЛФО как составляющие расклинивающего давления между частицами. Действие энергий притяжения и отталкивания в зависимости от расстояния между частицами показано на рис. 4.2.


Рис. 4.2.

На результирующей кривой суммарной энергии на рис. 4.2 можно выделить три участка.

Участок а. На малых расстояниях между коллоидными частицами (до 100 нм) преобладают силы притяжения, возникает энергетическая яма или ближний энергетический минимум. Если частицы сблизятся на такое расстояние, произойдет коагуляция под влиянием сил притяжения. Коагуляция в таких случаях необратима.

Участок б. На средних расстояниях электростатические силы отталкивания больше сил межмолекулярного притяжения, возникает энергетический максимум - потенциальный барьер, препятствующий слипанию частиц; высота барьера зависит от заряда поверхности и толщины диффузного слоя.

Если потенциальный барьер высок, частицы не в состоянии его преодолеть, то коагуляция не происходит. Возможности преодоления барьера определяются его снижением (уменьшение заряда поверхности и сил отталкивания между частицами, например при воздействии электролита) или увеличением энергии частиц (нагревание).

В лияние электролитов на строение двойного электрического слоя разобрано в подпараграфе 4.3.3.

Далее под влиянием сил притяжения частицы сближаются, и происходит коагуляция. Если частицы не могут преодолеть барьер, то коагуляция не происходит и система может сохранять агрегативную устойчивость достаточно долго.

Участок в. На относительно больших расстояниях (около 1000 нм) также превалируют силы притяжения, образуя на результирующей кривой так называемый дальний минимум. Глубина дальнего минимума индивидуальна для каждой системы. При незначительном дальнем минимуме сближению частиц препятствует потенциальный барьер.

Если дальний минимум достаточно глубок, то частицы при сближении не могут покинуть потенциальной ямы и остаются в равновесном состоянии на соответствующем расстоянии друг от друга, сохраняя свою индивидуальность.

Наличие высокого потенциального барьера препятствует более тесному сближению частиц, между ними сохраняется прослойка жидкости. Система в целом сохраняет дисперсность, представляя собой рыхлый осадок - коагулянт, или флокулянт. Такое состояние отвечает обратимости коагуляции; возможен перевод системы в состояние золя (пептизация).

« Пептизация - один из методов получения дисперсных систем, см. параграф 2.4.

При большой концентрации дисперсной фазы может образоваться структурированная система - гель.

Особенности структурированных систем более подробно обсуждаются в параграфе 9.4.

Резюме

Агрегативная устойчивость системы (устойчивость к коагуляции ) во многом определяется наличием электрического заряда на поверхности.

  • Vetvey E.J., Overbeek J. Th. G. Theory of the stability of lyophobic colloids. N. Y.: Elsevier,1948.

Под устойчивостью дисперсной системы понимают постоянство во времени ее состояния и основных свойств: дисперсности, равномерного распределения частиц в объеме среды и характера взаимодействия между частицами. Устойчивость дисперсных систем делят на седиментационную (кинетическую), агрегативную и фазовую (конденсационную).

Седиментационная устойчивость характеризует способность дисперсной системы сохранять равномерное распределение частиц в объеме, т.е. противостоять действию силы тяжести и процессам оседания или всплывания частиц.

Агрегативная устойчивость - это способность системы противостоять процессу укрупнения частиц.

По отношению к агрегации дисперсные системы делятся на следующие.

1. Термодинамически устойчивые, или лиофильные, которые самопроизвольно диспергируются и существуют без дополнительной стабилизации (растворы коллоидных ПАВ, растворы полимеров, суспензоиды - глина, мыла, растворы ВМВ и т.п.). При образовании этих систем свободная энергия Гиббса уменьшается: DG <0.

2. Принципиально термодинамически неустойчивые, или лиофобные системы. Их неустойчивость обусловлена избытком поверхностной энергии. Они не могут быть получены самопроизвольным диспергированием (золи, суспензии, эмульсии). На их образование всегда затрачивается энергия: DG >0.

Процесс слипания частиц дисперсной фазы в результате потери агрегативной устойчивости называется коагуляцией .

Под фазовой (конденсационной) устойчивостью понимается структура и прочность агрегатов, образующихся при коагуляции дисперсной системы. Конденсационно неустойчивые системы образуют непрочные агрегаты или рыхлые осадки, в которых частицы теряют свою подвижность, но сами сохраняются длительное время. Этому способствуют прослойки дисперсионной среды между частицами. Агрегаты с такой структурой могут снова распадаться на отдельные частицы, т.е. подвергаться пептизации. Конденсационно устойчивые системы характеризуются образованием агрегатов с прочной структурой. К этому приводит непосредственный фазовый контакт частиц друг с другом, процесс кристаллизации, срастания частиц и т.п.

Объединение частиц может привести к образованию сплошной структурированной системы, обладающей фазовой устойчивостью.

Факторы агрегативной устойчивости дисперсных систем делят на термодинамические и кинетические.

К термодинамическим факторамотносятся следующие:

электростатический - способствует созданию электростатичес-ких сил отталкивания вследствие возникновения двойного электрического слоя (ДЭС) на поверхности частиц;

адсорбционно-сольватный - приводит к уменьшению межфазного натяжения, что препятствует сближению частиц;

энтропийный - проявляется в стремлении частиц к равномерному распределению по объему системы.

К кинетическим факторам устойчивости, снижающим скорость агрегации частиц, относятся следующие:

структурно-механический связан с образованием на поверхности частиц защитных пленок, обладающих упругостью и механической прочностью, стойких к разрушению;

гидродинамический - снижает скорость движения частиц вследствие изменения вязкости и плотности дисперсионной среды.

Теория устойчивости гидрофобных коллоидов разработана Деряпшым, Ландау, Фервееми Овербеком (теория ДЛФО). Устойчивость дисперсных систем определяется балансом энергии притяжения и отталкивания частиц. Энергия притяжения обусловлена межмолекулярными силами Ван-дер-Ваальса и изменяется обратно пропорционально квадрату расстояния между частицами. Энергия отталкивания, по теории ДЛФО, определяется только электростатической составляющей расклинивающего давления (давления отталкивания) и убывает с расстоянием по экспоненциальному закону. В зависимости от баланса этих сил в тонкой прослойке жидкости между сближающимися частицами возникает либо положительное расклинивающее давление, препятствующее их соединению, либо отрицательное, приводящее к утончению прослойки и контакту между частицами.

Возникновение расклинивающего давления в тонких жидких слоях обусловлено такими факторами:

1) электростатическим взаимодействием в слое, обусловленное взаимным перекрыванием двойных электрических слоев (ДЭС) – это силы отталкивания с энергией U отт >0;

2) ван-дер-Ваальсовыми силами притяжения с энергией U пр <0;

1) адсорбционными силами, возникающими при перекрывании молекулярных адсорбционных слоев, где повышенная концентрация создает осмотический поток в сторону пленки, приводит к росту поверхностной энергии системы и, следовательно, к отталкиванию;

2) структурным , связанным с образованием граничных слоев растворителя с особой структурой. Он характерен для лиофильных систем и соответствует термодинамическим представлениям об адсорбционно-сольватном барьере. Эффект обычно положительны.

Результирующая энергия межчастичного взаимодействия U определяется как сумма двух составляющих:

Если |U отт | > |U пр |, то преобладают силы отталкивания, коагуляция не происходит, золь является агрегативно устойчивым. В противоположном случае преобладают силы притяжения между частицами, происходит коагуляция.

Рассмотрим количественную интерпретацию этих сил.

Электростатическое отталкивание между мицеллами возникает при перекрывании диффузных слоёв противоионов. Энергия этого взаимодействия:

где h – расстояние между частицами; - величина, обратная толщине диффузного слоя δ; A – величина, не зависящая от h и определяемая параметрами ДЭС.

Величины א и A могут быть рассчитаны на основе теории ДЭС.

Расчёты показывают, что энергия отталкивания уменьшается:

· при увеличении зарядов противоионов и их концентрации ;

· при уменьшении по абсолютной величине φ о и z-потенциала .

Из уравнения следует, что U отт убывает с увеличением расстояния между частицами h по экспоненциальному закону.

Энергия притяжения связана, главным образом, с дисперсионным взаимодействием между молекулами. Она может быть рассчитана по уравнению

где A Г – константа Гамакера.

Из этого уравнения следует, что энергия притяжения изменяется с увеличением расстояния между частицами h обратно пропорционально квадрату расстояния. Таким образом, притяжение сравнительно медленно уменьшается с увеличением расстояния. Так, при увеличении h в 100 раз энергия притяжения уменьшается в 10 4 раз. В то же время энергия отталкивания уменьшается в 10 43 раз.

Результирующая энергия взаимодействия между частицами, находящимися на расстоянии h , определяется уравнением:

Зависимость суммарной потенциальной энергии межчастичного взаимодействия от расстояния между частицами имеет сложный характер.

Общий вид этой зависимости U = f(h) представлен на рисунке 1.

На графике есть три участка:

1) 0 < h < h 1 . U (h)<0, между частицами преобладают силы притяжения, наблюдается ближний минимум.

U отт → const; U пр → -∞. Происходит коагуляция.

2) h 1 <h <h 2 . U (h )>0 – между частицами преобладают силы отталкивания. U отт > |U пр |.

3) h 2 < h < h 3 . U (h )<0 – обнаруживается дальний минимум, однако глубина его невелика.

При h = h 1 , h 2 , h 3 U (h ) = 0, т. е. при этих расстояниях между частицами силы притяжения уравновешиваются силами отталкивания.

Таким образом, если частицы сблизятся на расстояние меньше h 1 , они неизбежно слипнутся, но для этого должен быть преодолён потенциальный барьер ∆U к . Это возможно при достаточной кинетической энергии частиц, которая среднестатистически близка к произведению κТ .

Рассмотрим взаимодействие двух частиц. Будем одну частицу считать неподвижной, а вторую – приближающейся к ней с энергией, равной κТ .

Если κТ < ∆U пр, частицы останутся на расстоянии h min и будут связаны между собой через слой дисперсионной среды, т. е. образуют “пару”, но непосредственно не слипаются и не теряют своей седиментационной устойчивости. В таких случаях говорят, что взаимодействие происходит в дальнем минимуме.

Если ∆U min < κТ << ∆U к , то частицы при столкновении отлетают друг от друга. Система агрегативно устойчива.

Если κТ < ∆U к , то происходит медленная коагуляция.

Если κТ > ∆U к , то происходит быстрая коагуляция.

Так как золь обычно рассматривают при постоянной температуре, кинетическая энергия частиц остаётся постоянной. Следовательно, для коагуляции должен быть уменьшен потенциальный барьер коагуляции ∆U к .

Обычно для понижения потенциального барьера в систему вводится электролит-коагулянт. Теория ДЛФО даёт возможность вычислить порог быстрой коагуляции С КБ:

где А , В – постоянные величины, которые могут быть рассчитаны;

ε – диэлектрическая проницаемость среды;

Z – заряд иона-коагулянта;

ē – заряд электрона.

Лиофобные дисперсные системы (золи, эмульсии, суспензии) агрегативно неустойчивы, поскольку у них имеется избыток поверхностной энергии. Процесс укрупнения частиц протекает самопроизвольно, так как он ведет к уменьшению удельном поверхности и снижению поверхностной энергии Гиббса.

Увеличение размера частиц может идти как за счет коагуляции, т.е. слипания частиц, так иза счет изотермической перегонки (перенос вещества от мелких частиц к крупным). Коагуляция лиофобных дисперсных систем может происходить под влиянием ряда факторов: механических воздействий, света, изменения температуры, изменения концентрации дисперсной фазы, при добавлении электролитов.

Различают два типа электролитной коагуляции коллоидных систем: нейтрализации иную и концентрационную.

Нейтрализщионная коагуляция наблюдается у золей со слабо заряженными частицами. Ионы добавляемого электролита адсорбируются на заряженной поверхности, снижая поверхностный потенциал частиц. В результате уменьшения заряда электрические силы отталкивания между частицами ослабевают, частицы при сближении слипаются и выпадают в осадок.

Наименьшая концентрация электролита С к, при которой начинается медленная коагуляция, называется порогом коагуляции.

При дальнейшем увеличении концентрации электролита выше порога коагуляции скорость коагуляции сначала нарастает (участок I на рисунке 2) - это область медленной коагуляции.

Область, в которой скорость коагуляции перестает зависеть от концентрации электролита, называется областью быстрой коагуляции (участок II на рисунке 2).

При электролитной коагуляции по концентрационному типу порог коагуляции С к в соответствии с правилом Дерягина - Ландау обратно пропорционален заряду противоионов Z в шестой степени:

Из него следует, что значения порогов коагуляции для одно-, двух-и трехзарядных ионов относятся как

Величина, обратная порогу коагуляции, называется коагулирую-щей способностью. Значение коагулирующей способности для одно-, двух- и трехзарядных противоионов относятся между собой как 1:64:729.

Порог коагуляции, кмоль/м 3 , рассчитывают по формуле

где С эл - концентрация электролита, кмоль/м 3 ;

V эл, - минимальный объем электролита, вызывающий коагуляцию, м 3 ;

V золь - объем золя, м 3 .



Поделиться: