Стоячие волны и способы их образования. Фазовая скорость волны

Стоячей называется волна, возникающая при наложении (суперпозиции) двух встречных плоских волн одинаковой амплитуды и поляризации. Стоячие волны возникают, например, при наложении двух бегущих волн, одна из которых отразилась от границы раздела двух сред.

Найдем уравнение стоячей волны. Для этого предположим, что плоская бегущая волна = сДх, t) с амплитудой А и частотой со, распространяющаяся в положительном направлении оси х, складывается со встречной волной?, 2 = О той же амплитуды и частоты. Уравнения этих волн запишем в тригонометрической форме следующим образом:

где Cj и %2 смещения точек среды, вызванные волнами, распространяющимися в положительном и отрицательном направлениях оси Ох соответственно. Согласно принципу суперпозиции волн в произвольной точке среды с координатой х в момент времени 1 смещение с, составит % + или % = A cos(co/ - кх) + + A cos(co t + кх).

Используя известное из тригонометрии соотношение , получим:

В этом выражении имеются два тригонометрических члена. Первый (cos(Atjc)) - это функция только координаты и может рассматриваться как амплитуда стоячей волны, изменяющаяся от точки к точке, т.е.

Так как амплитуда колебаний - величина существенно положительная, в последнем выражении поставлен знак модуля. Второй множитель в (2.183) - (cos(k>0) зависит только от времени и описывает гармоническое колебательное движение точки с фиксированной координатой х. Таким образом, все точки среды совершают гармонические колебания с различными (зависящими от координаты) амплитудами. Как видно из формулы (2.184), амплитуда стоячей волны в зависимости от координаты х изменяется от нуля до 2А. Точки, в которых амплитуды колебаний максимальны (24), называются пучностями стоячей волны. Точки, в которых амплитуды колебаний равны нулю, называются узлами стоячей волны (рис 2.25).

Найдем координаты узлов стоячей волны. Для этого запишем очевидное равенство |24cos(&x)| = 0, отсюда cos кх = 0. Для того чтобы последнее равенство имело место, необходимо выполнение условия

, где п = 0, 1, 2,.... Заменив к его выражением через длину волны, получим Отсюда находим координаты

Рис. 2.25. Стоячие волны «мгновенные фотографии» в разные моменты времени I, отстоящие на четверть периода Т колебаний:

Светлые кружки

изображают частицы среды, колеблющиеся в поперечной стоячей волне. Разной длины стрелки - направление и величину (длина стрелки) их скорости

Соответственно можно определить и координаты пучностей стоячей волны. Для этого следует принять 12A cos (foe) I = 24. Откуда следует, что координаты точек, колеблющихся с максимальной амплитудой, должны удовлетворить условию Заменив к

на , получим выражение для координат пучностей:

Расстояния между соседними узлами или соседними пучностями (они одинаковы) называют длиной стоячей волны. Как видно из выражений (2.185) и (2.186), это расстояние равно , т.е.

Пучности и узлы сдвинуты по оси х друг относительно друга на четверть длины волны.

На рисунке 2.25, а за х = 0 выбрана точка пучности при п = 0 (2.186). За t = 0 принят момент, когда колебания всех точек среды проходят через точку равновесия, где смещения всех точек % в стоячей волне равны нулю, график волны - прямая линия. Однако в этот момент каждая точка (кроме точек, расположенных в узлах, где смещение и скорость всегда равны нулю) обладает определенной скоростью, показанной на рисунке стрелками разной длины и пунктирной огибающей. При t - Т/4 (рис. 2.25, б) смещения достигнут максимума, волна изображается непрерывной синусоидой, но скорость каждой точки среды станет равной нулю. Момент времени t= Т/ 2 (рис. 2.25, в) снова соответствует прохождению равновесия, но скорости всех точек направлены в противоположную сторону. И так далее (рис. 2.25, гид, где повторяется случай, показанный на рис. 2.25, а).

Рис. 2.26. Отражение волны от границы раздела разных сред: а - более плотной;

6 - менее плотной

Сравним бегущую и стоячую волны. В плоской бегущей волне колебания всех точек среды, имеющих разные координаты х, происходят с одинаковой амплитудой, но фазы колебаний различны и повторяются через Ах = X или At - Т. В стоячей волне все точки (от узла до узла) совершают колебания в одной фазе, но амплитуды их колебаний различны. Точки среды, разделенные узлом, совершают колебания в противофазе. Таким образом, стоячие волны энергию вдоль направления х не переносят.

В качестве модели стоячей волны можно рассмотреть поперечные колебания мягкого жгута, закрепленного с одного конца. Моделью плотной границы на этом конце жгута (рис. 2.26, а справа) является фиксация узла стоячей волны. Моделью подвижной (менее плотной) границы является тонкий невесомый шнурок, соединяющий конец жгута с закреплением (рис. 2.26, б также справа). Анализ условий отражения волны в этих двух случаях показывает, что при отражении от более плотной среды (см. рис. 2.26, а) волна «теряет» половину длины волны, т.е. при таком отражении происходит изменение фазы колебаний на л. Отражение от менее плотной среды не сопровождается изменением фазы, поэтому у границ раздела двух сред (на рис. 2.26, б в месте соединения жгута со шнурком) всегда будет пучность.

Особым случаем интерференции являются стоячее волны - это волны, образующиеся при наложении двух бегущих воли, распространяющихся навстречу друг другу с одинаковыми частотами и амплитудами, а в случае поперечных волн и одинаковой поляризацией.

Для вывода уравнения стоячей волны предположим, что две плоские волны распространяются навстречу друг другу вдоль оси х в среде без затухания, причем обе волны характеризуются одинаковыми амплитудами и частотами. Кроме того, начало координат выберем в точке, в которой обе волны имеют одинаковую начальную фазу, а отсчет времени начнем с момента, когда начальные фазы обеих волн равны нулю. Тогда соответственно уравнения волны, распространяющейся вдоль положительного направления оси х, и волны, распространяющейся ей навстречу, будут иметь вид

Сложив эти уравнения и учитывая, что k =2v /X (см. (154.3)), получим уравнение стоячей волны:

Из уравнения стоячей волны (157.2) вытекает, что в каждой точке этой волны происходят колебания той же частоты w с амплитудой A ст =| 2А cos (2p х/l )|, зависящей от координаты х рассматриваемой точки.

В точках среды, где

амплитуда колебаний достигает максимального значения, равного 2А. В точках среды, где

амплитуда колебаний обращается в нуль. Точки, в которых амплитуда колебаний максимальна (А ст = 2А ), называются пучностями стоячей волны , а точки, в которых амплитуда колебаний равна нулю (A ст =0), называются узлами стоячей волны . Точки среды, находящиеся в узлах, колебаний не совершают.

Из выражений (157.3) и (157.4) получим соответственно координаты пучностей и узлов:

(157.5)

(157.6)

Из формул (157.5) и (157.6) следует, что расстояния между двумя соседними пучностями и двумя соседними узлами одинаковы и равны l /2. Расстояние между соседними пучностью и узлом стоячей волны равно l /4.

В отличие от бегущей волны, все точки которой совершают колебания с одинаковой амплитудой, но с запаздыванием по фазе (в уравнении (157.1) бегущей волны фаза колебаний зависит от координаты х рассматриваемой точки), все точки стоячей волны между двумя узлами колеблются с разными амплитудами, но с одинаковыми фазами (в уравнении (157.2) стоячей волны аргумент косинуса не зависит от х ). При переходе через узел множитель 2A cos (2p x /l ) меняет свой знак, поэтому фаза колебаний по разные стороны от узла отличается на p , т. е. точки, лежащие по разные стороны от узла, колеблются в противофазе.

Образование стоячих волн наблюдают при интерференции бегущей и отраженной волн. Например, если конец веревки закрепить неподвижно, то отраженная в месте закрепления веревки волна будет интерферировать с бегущей волной и образует стоячую волну. На границе, где происходит отражение волны, в данном случае возникает узел. Будет ли на границе отражения узел или пучность, зависит от соотношения плотностей сред. Если среда, от которой происходит отражение, менее плотная, то в месте отражения возникает пучность (рис. 222, а), если более плотная - узел (рис. 222, б). Образование узла связано с тем, что волна, отражаясь от более плотной среды, меняет фазу на противоположную и у границы происходит сложение колебаний с противоположными фазами, в результате чего получается узел. Если же волна отражается от менее плотной среды, то изменения фазы не происходит и у границы колебания складываются с одинаковыми фазами - образуется пучность.

Если рассматривать бегущую волну, то в направлении ее распространения переносится энергия колебательного движения. В случае же стоячей волны переноса энергии нет, так как падающая и отраженная волны одинаковой амплитуды несут одинаковую энергию в противоположных направлениях. Поэтому полная энергия результирующей стоячей волны, заключенной между узловыми точками, остается постоянной. Лишь в пределах расстояний, равных половине длины волны, происходят взаимные превращения кинетической энергии в потенциальную и обратно.

Очень важный случай интерференции наблюдается при наложении плоских волн с одинаковой амплитудой. Возникающий в результате этого колебательный процесс называется стоячей волной .

Практически стоячие волны возникают при отражении волн от преград. Падающая на преграду волна и бегущая ей навстречу отраженная волна, налагаясь друг на друга, дают стоячую волну.

Рассмотрим результат интерференции двух синусоидальных плоских волн одинаковой амплитуды, распространяющихся в противоположных направлениях.

Для простоты рассуждений допустим, что обе волны вызывают в начале координат колебания в одинаковой фазе.

Уравнения этих колебаний имеют вид:

Складывая оба уравнения и преобразовывая результат, по формуле для суммы синусов получим:

- уравнение стоячей волны .

Сравнивая это уравнение с уравнением гармонических колебаний, мы видим, что амплитуда результирующих колебаний равна:

Так как , а , то .

В точках среды, где , колебания отсутствуют, т.е. . Эти точки называются узлами стоячей волны .

В точках, где , амплитуда колебаний имеет наибольшее значение, равное . Эти точки называются пучностями стоячей волны . Координаты пучностей находятся из условия , т.к. , то .

Отсюда :

Аналогично координаты узлов находятся из условия:

Откуда :

Из формул координат узлов и пучностей следует, что расстояние между соседними пучностями, также как и расстояния между соседними узлами, равно . Пучности и узлы сдвинуты друг относительно друга на четверть длины волны.

Сравним характер колебаний в стоячей и бегущей волне. В бегущей волне каждая точка совершает колебания, амплитуда которых не отличается от амплитуды других точек. Но колебания различных точек происходят с различными фазами .

В стоячей волне все частицы среды, находящиеся между двумя соседними узлами колеблются в одной и той же фазе, но с разными амплитудами. При переходе через узел фаза колебаний скачкообразно изменяется на , т.к. изменяется знак .

Графически стоячая волна может быть изображена следующим образом:

В момент времени, когда , все точки среды имеют максимальные смещения, на-правление которых определяется знаком . Эти смещения показаны на рисунке сплошными стрелками.

Спустя четверть периода, когда , смещения всех точек равны нулю. Частицы проходят через линию с различными скоростями.

Спустя еще четверть периода, когда , частицы опять будут иметь максимальные смещения, но противоположного направления (пунктирные стрелки).

При описании колебательных процессов в упругих системах за колеблющуюся величину можно принять не только смещение, но и скорость частиц, а также и величину относительной деформации среды.


Для нахождения закона изменения скорости стоячей волны продифференцируем по уравнение смещения стоячей волны и для нахождения закона изменения деформации продифференцируем по уравнение стоячей волны.

Анализируя эти уравнения, мы видим, что узлы и пучности скорости совпадают с узлами и пучностями смещения; узлы и пучности деформации совпадают соответственно с пучностями и узлами скорости и смещения.

Колебания струны

В закрепленной с обоих концов натянутой струне при возбуждении поперечных колебаний устанавливаются стоячие волны, причем в местах закрепления струны должны располагаться узлы. Поэтому в струне возбуждаются только такие колебания, половина длины которых укладывается на длине струны целое число раз.

Отсюда вытекает условие:

где - длина струны.

Или иначе . Этим длинам волн соответствуют частоты , где - фазовая скорость волны. Величина ее определяется силой натяжения струны и ее массой.

При - основная частота.

При - собственные частоты колебаний струны или обертоны .

Эффект Допплера

Рассмотрим простейшие случаи, когда источник волн и наблюдатель движутся относительно среды вдоль одной прямой:

1. Источник звука движется относительно среды со скоростью , приемник звука покоится.

В этом случае за период колебаний звуковая волна отойдет от источ-ника на расстояние , а сам источник сместится на расстояние равное .

Если источник удалять от приемника, т.е. двигать в направлении обратном направлению распространения волны, то длина волны .

Если источник звука приближать к приемнику, т.е. двигать в направлении распространения волны, то .

Частота звука воспринимаемая приемником равна:

Подставим вместо их значения для обоих случаев:

С учетом того, что , где - частота колебаний источника, равенство примет вид :

Разделим и числитель и знаменатель этой дроби на , тогда:

2. Источник звука неподвижен, а приемник движется относительно среды со скоростью .

В этом случае длина волны в среде не изменяется и по-прежнему равна . Вместе с тем две последовательные амплитуды, отличающиеся по времени на один период колебаний , дойдя до движущегося приемника, будут отличаться по времени в моменты встречи волны с приемником на отрезок времени , величина которого больше или меньше в зависимости от того, удаляется или приближается приемник к источнику звука. За время звук распространяется на расстояние , а приемник сместится на расстояние . Сумма этих величин и дает нам длину волны :

Период колебаний, воспринимаемых приемником , связан с частотой этих колебаний соотношением:

Подставив вместо его выражение из равенства (1), получим:

Т.к. , где - частота колебаний источника, а , то:

3. Источник и приемник звука движутся относительно среды. Соединяя результаты, полученные в двух предыдущих случаях, получим:

Звуковые волны

Если упругие волны, распространяющиеся в воздухе, имеют частоту в пределах от 20 до 20000 Гц, то, достигнув человеческого уха, они вызывают ощущение звука. Поэтому волны лежащие в этом диапазоне частот называются звуковыми. Упругие волны с частотой менее 20 Гц называются инфразвуком . Волны с частотой более 20000 Гц называются ультразвуком . Ультразвуки и инфразвуки человеческое ухо не слышит.

Звуковые ощущения характеризуются высотой звука, тембром и громкостью. Высота звука определяется частотой колебаний. Однако источник звука испускает не одну, а целый спектр частот. Набор частот колебаний, присутствующих в данном звуке, называется его акустическим спектром . Энергия колебания распределяется между всеми частотами акустического спектра. Высота звука определяется по одной - основной частоте, если на долю этой частоты приходится значительно большее количество энергии, чем на долю других частот.

Если спектр состоит из множества частот, находящихся в интервале частот от до , то такой спектр называется сплошным (пример - шум).

Если спектр состоит из набора колебаний дискретных частот, то такой спектр называется линейчатым (пример - музыкальные звуки).

Акустический спектр звука в зависимости от своего характера и от распределения энергии между частотами определяет своеобразие звукового ощущения, называемое тембром звука. Различные музыкальные инструменты имеют различный акустический спектр, т.е. отличаются тембром звука.

Интенсивность звука характеризуется раз-личными величинами: колебаниями частиц среды, их скоростями, силами давления, напряжениями в них и др.

Она характеризует амплитуду колебаний каждой из этих величин. Однако, поскольку эти величины взаимосвязаны, целесообразно ввести единую энергетическую характеристику. Такая характеристика для волн любого типа была предложена в 1877 году. Н.А. Умовым.

Вырежем мысленно из фронта бегущей волны площадку . За время эта площадка переместится на расстояние , где - скорость волны.

Обозначим через энергию единицы объема колеблющейся среды. Тогда энергия всего объема будет равна .

Эта энергия была перенесена за время волной, распространяющейся через площадку .

Разделив это выражение на и , получим энергию, переносимую волной через единицу площади в единицу времени. Эта величина обозначается буквой и носит название вектора Умова

Для звукового поля вектор Умова носит название силы звука.

Сила звука является физической характеристикой интенсивности звука. Мы оцениваем ее субъективно, как громкость звука. Человеческое ухо воспринимает звуки, сила которых превышает некоторое минимальное значение, различное для различных частот. Это значение называется порогом слышимости звука. Для средних частот порядка Гц порог слышимости порядка .

При очень большой силе звука порядка звук воспринимается кроме уха органами осязания, а в ушах вызывает болевое ощущение.

Значение интенсивности, при котором это происходит, называется порогом болевого ощущения . Порог болевого ощущения, также как и порог слышимости, зависит от частоты.

Человек обладает довольно сложным аппаратом для восприятия звуков. Звуковые колебания собираются ушной раковиной и через слуховой канал воздействуют на барабанную перепонку. Колебания ее передаются в небольшую полость, называемую улиткой. Внутри улитки расположено большое количество волокон, имеющих различную длину и натяжение и, следовательно, различные собственные частоты колебаний. При действии звука каждое из волокон резонирует на тот тон, частота которого совпадает с собственной частотой волокна. Набор резонансных частот в слуховом аппарате и определяет область воспринимаемых нами звуковых колебаний.

Субъективно оцениваемая нашим ухом громкость возрастает гораздо медленнее, чем интенсивность звуковых волн. В то время, как интенсивность возрастает в геометрической прогрессии - громкость возрастает в арифметической прогрессии. На этом основании уровень громкости определяется как логарифм отношения интенсивности данного звука к интенсивности, принятой за исходную

Единица уровня громкости называется белом . Используют и более мелкие единицы - децибелы (в 10 раз меньше бела).

где - коэффициент поглощения звука.

Величина коэффициента поглощения звука возрастает пропорционально квадрату частоты звука, поэтому низкие звуки распространяются дальше высоких.

В архитектурной акустике для больших помещений существенную роль играет реверберация или гулкость помещений. Звуки, испытывая многократные отражения от ограждающих поверхностей, воспринимаются слушателем в течении некоторого довольно большого промежутка времени. Это увеличивает силу доходящего до нас звука, однако, при слишком длительной реверберации отдельные звуки накладываются друг на друга и речь перестает восприниматься членораздельно. Поэтому стены залов покрывают специальными звукопоглощающими материалами для уменьшения реверберации.

Источником звуковых колебаний может служить любое колеблющееся тело: язычок звонка, камертон, струна скрипки, столб воздуха в духовых инструментах и т.д. эти же тела могут служить и приемниками звука, когда они приходят в движение под действием колебаний окружающей среды.

Ультразвук

Чтобы получить направленную, т.е. близко к плоской, волну размеры излучателя должны быть во много раз больше длины волны. Звуковые волны в воздухе имеют длину до 15 м, в жидких и твердых телах длина волны еще больше. Поэтому построить излучатель, который создавал бы направленную волну подобной длины, практически не представляется возможным.

Ультразвуковые колебания имеют частоту свыше 20000 Гц, поэтому длина волны их очень мала. С уменьшением длины волны уменьшается также роль дифракции в процессе распространения волн. Поэтому ультразвуковые волны могут быть получены в виде направленных пучков, подобных пучкам света.

Для возбуждения ультразвуковых волн используют два явления: обратный пьезоэлектрический эффект и магнитострикцию .

Обратный пьезоэлектрический эффект состоит в том, что пластинка некоторых кристаллов (сегнетовой соли, кварца, титаната бария и др.) под действием электрического поля слегка деформируется. Поместив ее между металлическими обкладками, на которые подается переменное напряжение, можно вызвать вынужденные колебания пластинки. Эти колебания передаются окружающей среде и порождают в ней ультразвуковую волну.

Магнитострикция заключается в том, что ферромагнитные вещества (железо, никель, их сплавы и т.д.) под действием магнитного поля деформируются. Поэтому, поместив ферромагнитный стержень в переменное магнитное поле, можно возбудить механические колебания.

Высокие значения акустических скоростей и ускорений, а также хорошо разработанные методы изучения и приема ультразвуковых колебаний, позволили использовать их для решения многих технических задач. Перечислим некоторые из них.

В 1928 г. советский ученый С.Я. Соколов предложил использовать ультразвук для целей дефектоскопии, т.е. для обнаружения скрытых внутренних дефектов типа раковин, трещин, рыхлот, шлаковых включений и др. в металлических изделиях. Если размеры дефекта превышают длину волны ультразвука, то ультразвуковой импульс отражается от дефекта и возвращается обратно. Посылая в изделие ультразвуковые импульсы, и регистрируя отраженные эхосигналы, можно не только обнаруживать наличие дефектов в изделиях, но и судить о размерах и месте расположения этих дефектов. В настоящее время этот метод широко используется в промышленности.

Направленные ультразвуковые пучки нашли широкое применение для целей локации, т.е. для обнаружения в воде предметов и определения расстояния до них. Впервые идея ультразвуковой локации была выказана выдающимся французским физиком П. Ланжевеном и разработана им во время первой мировой войны для обнаружения подводных лодок. В настоящее время принципы гидролокации используются для обнаружения айсбергов, косяков рыбы и т.д. этими методами может быть также определена глубина моря под днищем корабля (эхолот).

Ультразвуковые волны большой амплитуды широко применяются в настоящее время в технике для механической обработки твердых материалов, очистки мелких предметов (деталей часовых механизмов, трубопроводов и т.д.), помещенных в жидкость, обезгаживания и т.д.

Создавая при своем прохождении сильные пульсации давления в среде, ультразвуковые волны обуславливают целый ряд специфических явлений: измельчение (диспергирование) частиц, взвешенных в жидкости, образование эмульсий, ускорение процессов диффузии, активацию химических реакций, воздействие на биологические объекты и т.д.

Рассмотрим более подробно отражение волн.В частности, отражение волн от среды с большим волновым сопротивлением. По существу, вторая средаявляется преградой. Например, воздух и стена здания.

Запишем уравнения падающей и отраженной волн в виде

s 1 = А cos ( w t - kx) , s 2 = А cos ( w t + kx + j 0 ) .

(7.47)

В отраженной волне y 2 записана начальная фаза j 0 , равная разности фаз рассматриваемых колебаний, которая может принимать 0 или p , т.к. при отражении фаза результирующейволны может изменяться.

Падающая и отраженная волны отличаются направлением скорости распространения, поэтому перед волновым числом в уравнении (7.47) взят знак “+” При отражении от преграды происходит сложение волн (наблюдается явление интерференции) и возникает стоячая волна, уравнение которой имеет вид

Из уравнения (7.48) заключаем, что в каждой точке стоячей волны наблюдается колебание такой же частоты и периода, но амплитуда волны зависит от координаты х.

Проведем анализ уравнения (7.49).

1. Условие максимума

Фаза амплитуды стоячей волны равна целому числу p , т.е.

Где m =0, 1, 2, ...или .

Найдем координату максимума(пучности ):

(7.50)

Для простоты полагаем значение начальной фазы равной нулю. При таких условиях амплитуда стоячей волны максимальна: , т.к.cos (m p ) =1.

2. Условие минимума

Фаза амплитуды стоячей волны равна нечетному числу p /2:

или .

С учетом того, что j 0 /2=0,для координаты минимума (узел) имеем

;

(7.51)

Свойства стоячих волн

1. Расстояние между узлом и пучностью равно l /4:x пуч - х узел = l /4.

2. Расстояние между соседними узлами или пучностями -l /2, т.е. длина стоячей волны l ст = l /2.

Читателю предлагается самостоятельно проверить результаты выводов по пп.1 и2.

3. В бегущей волне фаза колебаний зависит от координаты Х, рассматриваемой колеблющейся частицы среды. В стоячей же волне все частицы среды между двумя узламисовершают колебания с различными амплитудами, но с одинаковыми фазами (сифазны), потому что аргумент cos (w t + j 0 /2) в уравнении стоячей волны (7.48) не зависит от координаты Х. При переходе через узел фаза колебаний (j = w t + j 0 /2) изменяется скачком на p , т.к.при этом в амплитуде стоячей волны сомножитель cos (kx + j 0 /2) изменяет свой знак на противоположный.

4. Если волна отражается от среды с большим волновым сопротивлением (неверно говорить “при отражении от более плотной среды”, как это пишут иногда) фаза изменяется на противоположную. При этом происходит потеря половины длины волны, потому что на расстоянии, равном половине длины волны, фаза изменяется на ± p . Поэтому после подстановки в уравнение стоячей волны (7.48), например, при значении j = - p будем иметь

s =2 А sin (kx) sin(w t).

Можно найти координаты узлов и пучностей. Предоставляем проделать это читателю самостоятельно.

Поскольку механические волны являются следствием возникновения деформаций в среде, вызванных источником упругих волн, то относительная деформация среды изменяется по закону

e = = - 2Aksin(kx+ j /2) с os( w t+ j /2),

(7.52)

где s - смещение волны; e - относительная деформация среды.

При этом скорость колебания частиц среды в стоячей волне

v = = - 2A w cos(kx+ j /2)sin( w t+ j /2).

(7.53)

Следовательно, в стоячей волне e опережаетскорость по фазе на p /2. Поэтому, когда скорость достигает максимума, относительная деформация e обращается в нуль, и наоборот, когда скорость обращается в нуль, относительная деформация e достигаетмаксимума.

Причем амплитуда скорости v a = ½ 2 A w cos ( kx + j 0 /2) ½

и амплитуда относительной деформации смещения e a = ½ 2 Aksin ( kx + j 0 /2) ½

зависят от координаты х по-разному, т.е. в пучностях стоячей волны размещаются пучности скорости и узлы деформаций среды, а в узлах стоячей волны - узлы скорости и пучности деформаций.

В упругой стоячей волне энергия периодически переходит из потенциальной, которая локализована вблизи пучностей деформации, в кинетическую энергию, локализованную вблизи пучностейскорости и, наоборот.

Таким образом, энергия периодически перемещается от пучностей к узлам и, наоборот от узлов к пучностям. Но в самих узлах и пучностях плотность потока энергии равна нулю. Поэтому среднее за период значение плотности потока энергии равно нулю в любой точке стоячей волны, т.к. две бегущие навстречу друг другу волны, образуют стоячую волну и переносят за период равную энергию в противоположных направлениях.

Собственные (резонансные) частоты стоячих волн

На практике в случае свободных колебаний некоторыхфизических систем, например, струн, столбов газа и др. устанавливаются стоячие волны, частоты которых удовлетворяют определенным условиям, т.е. могут принимать только определенные дискретные значения, называемые собственными частотами данной колебательной системы.

Например, в точках закрепления струн или стержней размещаются узлы смещения (пучности деформаций), а на свободных концах стержней - пучности смещения (узлы деформации). При колебаниях воздушного столба в цилиндрической трубке у закрытого конца трубки размещается пучность давления, а у открытого - узел давления.

В качестве примера рассмотрим возникновение стоячих волн при изменении натяжения колеблющейся струны (параметрический резонанс).

Частоты стоячих волн называют собственными или резонансными , т.к. такие колебания сопровождаются резонансными явлениями.

В отличие от пружинного, математического, или физического маятников, которые при колебаниях имеют одну собственную резонансную частоту (одна степень свободы), натянутая струна имеет много резонансных частот. Эти частоты в свою очередь кратны низшей частоте. Более продолжительное время сохраняются те волны, которым соответствуют резонансные частоты. В точках закрепления струны возникают узлы(рис. 7.12).

Рис. 7.12

Для нахождения резонансных частот воспользуемся тем, что длина стоячей волны связана с длиной самой струны:

гдеm = 1, 2, 3, ... и определяет число гармоник.

Например, основной тон (мода) - первая гармоника соответствует пучности, а длина струны ,(m =1; l 1 - длина волны первой гармоники).Для второй гармоники - 2 = l 2 ( m =2; l 2 - длина волны второй гармоники), для третьей - 3 = 2 l 3 /3 (m =3; l 3 - длина волны третьей гармоники) и т.д.

Частоты колебания стоячей волны можно найти по формуле

Замечание: Стоячая волна может существовать только при строго определенных частотах колебаний.

Действительно по условию при отсутствии колебаний на правом конце закрепленной струны, где координата х =, а амплитуда обращается в нуль и фаза равна j = p ,

А ст =2 А ½ cos(kx- p /2) ½

Общий вывод: Полученный результат является необычным для классической физики, потому что k и w могут принимать строго определенные значения:

, .

Наблюдаемое аномальное явление весьма существенно повлияло на разгадку квантовых явлений.

Согласно выводам квантовой теории следует, что все микрообъекты обладают корпускулярными и волновыми свойствами.

> Стоячие волны и резонанс

Характеристика стоячей волны с максимальной амплитудой: определение и графики стоячей волны, конструктивные и деструктивные помехи, особенности резонанса.

Стоячая волна – две волны накладываются, создавая новую с измененной амплитудой, но лишенной распространения.

Задача обучения

  • Охарактеризовать стоячую волну.

Основные пункты

  • Если две волны с одинаковыми амплитудой и длиной перемещаются в противоположные стороны, то чередуются между конструктивными и деструктивными помехами. В результате получаем стоячую на месте волну.
  • Узлы – точки без движения. Пучность – положение максимальной амплитуды.
  • В моменты землетрясений высокие здания могут легко разрушиться (если высота соответствует условию установки стоячей волны).

Термины

  • Резонанс – рост амплитуды колебания системы из-за воздействия периодической силы, чья чистота близка к собственной частоте системы.
  • Деструктивные помехи – волны мешают друг другу и точно не совпадают.
  • Конструктивные – волны мешают и расположены точно в фазе.

Стоячая волна

Иногда кажется, что волны вместо движения вибрируют. Подобные явления формируются из-за наложения двух или больше перемещающихся в разных направлениях волн. Помехи складываются по мере прохождения. Если обладают схожей амплитудой и длиной, то заметно чередование конструктивных и деструктивных помех. В результате получаем стоячую волну.

Отображена как сумма двух распространяющихся волн, перемещающихся в противоположных направлениях (красный и синий)

Стоячие волны можно найти в струнах музыкальных инструментов. Узлы – точки, лишенные перемещения. То есть, это определенная позиция, где волновое возмущение приравнивается к нулю. Фиксированные концы также выступают узлами, потому что струна туда не способна двигаться. Пучность указывает позицию максимальной амплитуды в стоячей волне.

У стоячей волны есть частота, связанная со скоростью распространения возмущения в струне. Длина волны (λ) вычисляется по дистанции между точками, где струна зафиксирована на позиции.

Здесь вы видите главный режим и первые шесть обертонов

Наиболее низкая частота – основная и выступает самой длинной. Обертоны или гармоники кратны основной частоте.

Резонанс

Если мы детальнее изучим случаи землетрясений, то заметим условия для резонанса: стоячие волны с конструктивными и деструктивными помехами. Здание способно вибрировать несколько секунд с частотой вращения, соответствующей частоте вибрации здания. Из-за этого одно строение разрушится, а более высокое способно остаться невредимым.

Волны землетрясения перемещаются по поверхности и отражают более плотные породы, поэтому в конкретных местах возникают конструктивные помехи. Очень часто районы возле эпицентра остаются невредимыми, а вот отдаленные несут потери.



Поделиться: