Open Library - открытая библиотека учебной информации. Конденсационные методы Конденсационные методы получения дисперсных систем

ВВЕДЕНИЕ

Предлагаемое учебное пособие содержит описание 7 лабораторных работ по основным разделам курса коллоидной химии.

Каждая работа состоит из теоретической и практической частей. В первой части изложены основы соответствующего раздела курса коллоидной химии, что позволит студентам сознательно и успешно выполнить лабораторные работы. Далее следует практическая часть, где описаны цель работы, необходимые реактивы и оборудование, методика ее выполнения и обработки экспериментальных результатов, требования к отчету и вопросы для самоконтроля.

Основные цели лабораторных работ по коллоидной химии – привить студентам навыки самостоятельной экспериментальной работы и помочь усвоению основного теоретического материала, рассматриваемого на лекциях.


ЛАБОРАТОРНАЯ РАБОТА №1

ПОЛУЧЕНИЕ ЗОЛЕЙ МЕТОДОМ ЗАМЕНЫ РАСТВОРИТЕЛЯ.

ИЗУЧЕНИЕ ЯВЛЕНИЯ НЕПРАВИЛЬНЫХ РЯДОВ.

ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Предмет коллоидной химии

Наука о поверхностных явлениях и дисперсных системах называется коллоидной химией .

К поверхностным явлениям относятся процессы, происходящие на поверхности раздела фаз, в межфазном поверхностном слое и возникающие в результате взаимодействия сопряженных фаз. Каждое тело ограничено поверхностью, поэтому объектами коллоидной химии могут быть тела любого размера. Однако поверхностные явления проявляются сильнее всего в телах с высокоразвитой поверхностью, которая придает им новые важные свойства.

Дисперсные системы , рассматриваемые в коллоидной химии, состоят как минимум из двух фаз. Одна из них является сплошной и называется дисперсионной средой. Другая фаза раздроблена и распределена в первой, ее называют дисперсной фазой .

Классификация дисперсных систем

Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсной фазы и дисперсионной среды. Три агрегатных состояния (твердое, жидкое и газообразное) позволяют выделить девять типов дисперсных систем (табл. 1.1). Для краткости их условно обозначают дробью, числитель которой указывает на агрегатное состояние дисперсной фазы, а знаменатель – дисперсионной среды. Например, дробью Т/Ж обозначают системы с твердой дисперсной фазой и жидкой дисперсионной средой (твердое в жидкости). Одно из девяти сочетаний Г/Г в обычных условиях не может образовать коллоидной системы, так как газы при любых соотношениях дают истинные растворы. Однако и газы могут проявлять некоторые свойства коллоидных систем благодаря непрерывным флуктуациям плотности и концентрации, вызывающим неоднородности в системе.



Из представленной классификации видно, что все дисперсные системы по кинетическим свойствам дисперсной фазы можно разделить на два класса: свободнодисперсные системы, в которых дисперсная фаза подвижна, и связнодисперсные системы – системы с твердой дисперсионной средой, в которой частицы дисперсной фазы не могут свободно передвигаться. К свободнодисперсным системам относятся золи, к связнодисперсным – гели.

Дисперсные системы классифицируют по дисперсности. Для свободнодисперсных и связнодисперсных систем классификации по дисперсности имеют существенные различия.

Таблица 1.1

Классификация дисперсных систем по агрегатному состоянию фаз

Условное обозначение системы Название системы и примеры
Т/Т Твердые гетерогенные системы: минералы, сплавы, бетон, композиционные материалы
Ж/Т Капиллярные системы: жидкость в пористых телах, адсорбенты в растворах, почвы, грунты
Г/Т Пористые тела: адсорбенты и катализаторы в газах
Т/Ж Суспензии и золи: промышленные суспензии, пульпы, взвеси, пасты, илы
Ж/Ж Эмульсии: природная нефть, кремы, молоко
Г/Ж Газовые эмульсии и пены: флотационные, противопожарные, мыльные пены
Т/Г Аэрозоли (пыли, дымы), порошки
Ж/Г Аэрозоли, туманы, в том числе промышленные, облака
Г/Г Коллоидные системы отсутствуют

Свободнодисперсные системы подразделяются на ультрамикрогетерогенные, размер частиц которых лежит в пределахот 10 –7 до 10 –5 см (от 1 до 100 нм), микрогетерогенные с размером частиц от 10 –5 до 10 –3 см (от 0,1 до 10 мкм) и грубодисперсные с частицами, размер которых превышает 10 ‑3 см.

Ультрамикрогетерогенные системы часто называют истинно коллоидными или просто коллоидными, так как раньше только такие системы считались объектом коллоидной химии. Сейчас термин «коллоидный» стал применяться в широком смысле, равноценном термину «гетерогенно-дисперсный», а за ультрамикрогетерогенными системами осталось название «золи».

Связнодисперсные системы, точнее, пористые тела, классифицируют на микропористые – с размерами пор до 2 нм, переходно-пористые – от 2 до 200 нм и макропористые – выше 200 нм. Системы Т/Т часто удобнее подразделять по дисперсности так же, как и свободнодисперсные системы.

По термодинамической устойчивости дисперсные системы классифицируют на лиофильные (термодинамически устойчивые) и лиофобные (термодинамически неустойчивые) .

Методы получения дисперсных систем

Лиофобные дисперсные системы (термодинамически неравновесные) могут быть получены двумя путями: конденсацией молекул и дроблением более крупных частиц до нужной степени дисперсности.

Конденсационный путь образования дисперсных систем связан с выделением новой фазы из гомогенной системы, находящейся в метастабильном состоянии, например, кристаллизация из пересыщенного раствора, конденсация пересыщенного пара и т. п. Этот процесс протекает в том случае, если химический потенциал вещества в новой (стабильной) фазе меньше, чем в старой (). Однако этот выгодный в конечном счете процесс проходит через стадию, требующую затраты энергии, – стадию образования зародышей новой фазы. Условия для возникновения зародышей новой фазы возникают в метастабильной системе в местах, где образуется местное пересыщение – флуктуации плотности (концентрации) достаточной величины. Радиус равновесного зародыша новой фазы связан со степенью пересыщения известной зависимостью (для жидкой капельки, образующейся в пересыщенном паре):

= (1.1)

где s и – поверхностное натяжение и молярный объем жидкой капельки; p и p – упругости пересыщенного и насыщенного пара соответственно.

Из уравнения видно, что для образования зародышей новой фазы необходимо пересыщение p /p >1. Чем больше степень пересыщения, тем меньше равновесный размер зародышей, тем легче он образуется.

Размеры образующихся частиц зависят от условий проведения процесса конденсации, в принципе – от соотношения между скоростями одновременно идущих процессов: образование зародышей и роста их. Для получения мелких частиц (т. е. частиц дисперсной фазы в будущей дисперсной системе) необходимо значительное преобладание скорости первого процесса над скоростью второго. Практически такие условия создаются либо в весьмав разбавленных растворах реагирующих веществ, либо, наоборот, в достаточно концентрированных растворах, когда образуется сразу много зародышей в процессе кристаллизации, не успевших вырасти до больших размеров. В первом случае образуется золь (коллоидная система), во втором получается мелкокристаллический осадок, который можно в определенных условиях перевести в коллоидный раствор.


Химическая конденсация

Если при химической реакции образуется труднорастворимое соединение, то оно при определенных условиях может быть получено в виде коллоидного раствора. Для этого нужно, во-первых, вести реакцию, разбавленную в растворе, чтобы скорость роста кристаллических частиц была невелика, тогда частицы получаются мелкие (10 –7 ¼10 –9 м) и системе будет обеспечена седиментационная устойчивость; во-вторых, одно из реагирующих веществ взять в избытке, чтобы на поверхности кристалла мог образоваться двойной электрический слой – основной фактор агрегативной устойчивости .

Физическая конденсация

В основе способа лежит конденсация молекул одного вещества – будущей дисперсной фазы, в другом веществе – будущей дисперсионной среды. Практически это может быть осуществлено различными путями, например, пропусканием одного вещества в другое.

Одним из примеров физической конденсации является метод замены растворителя: раствор какого-либо вещества постепенно, при перемешивании, прибавляют к жидкости, в которой это вещество нерастворимо. При этом происходит конденсация молекул и образование коллоидных частиц.

Таким способом можно получить гидрозоли серы, фосфора, канифоли, антрацена и других веществ, вливая их спиртовые растворы в воду. Строение двойного электрического слоя в этих системах недостаточно известно .

Дробление

Механическое дробление осуществляется в различного рода мельницах (для получения коллоидной дисперсности применяют дисперсные мельницы), с помощью ультразвука, в вольтовой дуге (для получения золей металлов) и т. д.

Дробление частиц малых размеров требует большой затраты работы, так как поверхность раздела между фазами в таких системах должна быть очень велика. Образующиеся при дроблении частицы имеют тенденцию самопроизвольного слипания (коагуляции), поэтому дробление следует производить в дисперсной среде в присутствии стабилизаторов – ионов или поверхностно-активных веществ.

Дробление в присутствии поверхностно-активного вещества (ПАВ) требует меньшие затраты работы. Эффект значительного понижения сопротивляемости твердых тел разрушения в результате адсорбции ПАВ был обнаружен Ребиндером П.А. и получил название адсорбционного понижения прочности .

Методы получения дисперсных систем делятся на две принципиально различающиеся группы: диспергационные и конденсационные.

Диспергирование

Получение дисперсных систем методом диспергирования связано с дроблением и измельчением веществ. Диспергирование может осуществляться механическими, электрическими, химическими (пептизация) и ультразвуковыми способами.

Механическое диспергирование веществ постоянно происходит в природе - выветривание горных пород, образование ледников и другие процессы. Большое значение механическое диспергирование имеет в промышленных процессах - обогащении руд, металлургическом производстве при образовании шлаков, в нефтепереработке, строительстве, медицине, фармацевтике. При этом используют различные типы и конструкции мельниц, обеспечивающие получение нужной степени размола. Так, шаровые мельницы обеспечивают получение частиц грубого размола (~ 10 4 м); в коллоидных мельницах получаются частицы более тонкого размола, например, при дроблении сахара, кофе, крахмала, графита, химических реактивов используют коллоидные мельницы для получения высокой степени дисперсности вещества.

Диспергирование начинается с дробления, измельчение вещества является следующей стадией. Работа W , затрачиваемая на диспергирование вещества, по уравнению Ребиндера состоит из двух слагаемых:

где W^ - работа, затрачиваемая на дробление; - работа, затрачиваемая на измельчение вещества; А К и As - изменение объема системы и поверхности дисперсных частиц в ней; и - коэффициенты пропорциональности.

Если объем тела пропорционален кубу линейного размера, а площадь - его квадрату, то уравнение Ребиндера можно переписать как соотношение

где /Г и - коэффициенты пропорциональности.

Для первой стадии диспергирования важно первое слагаемое К.а *,

так как работа, затрачиваемая на деформацию и дробление, связана с размерами исходных кусков вещества (как правило, крупных и с небольшой поверхностью) и их механической прочностью. На второй стадии диспергирования работа пропорциональна величине образующейся поверхности. При больших размерах частиц можно пренебречь работой образования поверхности и, наоборот, при малых размерах - работой объемного деформирования.

Если в целом коэффициенты пропорциональности К^ и К 2 зависят

от природы вещества, среды, метода дробления, то во втором слагаемом коэффициент /С, принимает на себя функцию энергии образования единицы поверхности, то есть поверхностного натяжения: к^ = К^ с5.

При дроблении и измельчении разрушение тел идет но местам прочностных дефектов - микро грещинам, которые имеются в слабых местах кристаллической решетки, при этом прочность частиц возрастает, что используется для получения более прочных материалов.

Для облегчения диспергирования материалов и снижения энергозатрат обычно используют специальные добавки, называемые понизителями прочности. Обычно добавление понизителей прочности в количестве -0,1% от массы измельчаемых веществ снижает энергозатраты на получение дисперсных систем примерно вдвое. Эффект снижения прочности твердых тел в присутствии понизителей прочности называется эффектом

Ребиндера. Он основан на том, что развитие микротрещин под действием силы идет легче при адсорбции различных веществ из среды, то есть сама по себе среда не разрушает поверхность тел, а лишь помогает разрушению. Действие добавок, представляющих из себя чаще всего поверхностноактивные вещества (ПАВ), сводится, прежде всего, к снижению поверхностного натяжения и уменьшению работы измельчения. Кроме того, добавки, смачивая материал, помогают среде проникнуть в места дефектов твердого тела и с помощью капиллярных сил облегчают его разрушение. Эффект Ребиндера широко используется в промышленности. Например, измельчение руды всегда проводят в водной среде в присутствии ПАВ; качество обработки деталей на станках в присутствии эмульсии ПАВ резко повышается, увеличивается срок службы металлорежущего инструмента и снижаются энергозатраты на проведение процесса.

Диспергирование широко используется при получении эмульсий - дисперсных систем, в которых одна жидкость диспергирована в другой жидкости, то есть обе фазы являются жидкими (Ж/Ж). Необходимым условием образования эмульсий является полная или частичная нерастворимость дисперсной фазы в дисперсионной среде. Поэтому жидкие вещества, образующие эмульсию, должны различаться по полярности. Обычно вода (полярная фаза) является составляющей частью эмульсий. Вторая фаза должна быть неполярной или малорастворимой жидкостью, называемой вне зависимости от состава маслом (бензол, толуол, растительные и минеральные масла).

Эмульсии делятся на два типа: прямыми называются эмульсии М/В (дисперсная фаза - масло, дисперсионная среда - вода); обратными (ин- вертными) - эмульсии В/М (дисперсии воды в масле). Примером эмульсий I типа могут служить эмульсии, образующиеся при конденсации отработанного пара в двигателе, пищевые эмульсии (молоко, сливки); типичная эмульсия II типа - сырая нефть, в которой содержится до 50% солевых растворов. Сырая нефть представляет собой эмульсию В/М, стабилизованную маслорастворимыми ПАВ (парафинами, асфальтенами). В качестве примера пищевых обратных эмульсий можно привести маргарины или сливочное масло. Тип эмульсии определяется объемным соотношением фаз: дисперсной фазой является та жидкость, которая находится в меньшем количестве. Определить тип можно по способности смешиваться с полярными и неполярными растворителями или растворять полярные или неполярные красители, а также но электрической проводимости (для водной дисперсионной среды электрическая проводимость на несколько порядков выше, чем для неводной).

Эмульсии имеют широкое распространение в природе и различных технологических процессах. Большую роль играют эмульсии в жизнедеятельности человека, например, кровь представляет эмульсию, в которой дисперсной фазой являются эритроциты.

Однотипность агрегатного состояния двух смежных фаз определяет особенности устойчивости эмульсий. Седиментационная устойчивость эмульсий достаточно велика и тем больше, чем меньше разница в плотностях дисперсной фазы и дисперсионной среды. На процесс седиментации в эмульсиях может накладываться процесс флокуляции (агрегации), приводящий к укрупнению частиц и, следовательно, к увеличению скорости их оседания (или всплывания).

Агрегативная устойчивость эмульсий, как и всех дисперсных систем, определяется их лиофильностью или лиофобноегью. Большинство эмульсий относится к лиофобным системам. Они термодинамически неустойчивы и нс могут образовываться самопроизвольно из-за наличия избытка свободной энергии на межфазной поверхности. Эта неустойчивость проявляется в самопроизвольном слиянии капель жидкости друг с другом (коа- лесценции), что может привести к полному разрушению эмульсии и разделению ее на два слоя. Агрегативная устойчивость таких эмульсий возможна лишь в присутствии стабилизатора, препятствующего слиянию частиц. Стабилизатором может быть компонент системы, находящийся в ней в избытке, или вещество, специально вводимое в систему, в этом случае стабилизатор называют эмульгатором. В качестве эмульгаторов обычно используются поверхностно-активные или высокомолекулярные вещества. Эмульгаторы могут быть гидрофильными и гидрофобными. Наиболее распространенными гидрофильными эмульгаторами являются натриевые (калиевые) соли жирных кислот, которые лучше растворяются в воде, чем в углеводородах. Они способны стабилизировать прямую эмульсию типа М/В. Ориентация адсорбционного слоя ПАВ происходит в соответствии с правилом Ребиндера: неполярный радикал обращен к неполярной жидкости, а полярная группа - к полярной. В эмульсиях прямого типа полярные части эмульгатора располагаются на наружной стороне капель масла и препятствуют их сближению. Эти же вещества в эмульсиях обратного типа адсорбируются полярными группами на внутренней поверхности капель воды и не мешают их слиянию (рис. 1.3).

Рис. 1.3. Расположение гидрофильного эмульгатора в прямых (а) и обратных (6 ) эмульсиях

В определенных условиях возможно явление, которое называется инверсией - обращением фаз эмульсии (или просто обращением эмульсии), когда при изменении условий или введения каких-либо реагентов, эмульсия данного типа превращается в эмульсию противоположного типа.

Известны два способа получения дисперсных систем. В одном из них тонко измельчают (диспергируют) твердые и жидкие вещества в соответствующей дисперсионной среде, в другом вызывают образование частиц дисперсионной фазы из отдельных молекул или ионов.

Методы получения дисперсных систем измельчением более крупных частиц называют диспергационными. Методы, основанные на образовании частиц в результате кристаллизации или конденсации, называют конденсационными.

23) Свойства каллоидов.

I тип - суспензоиды (или необратимые коллоиды, лиофобные коллоиды). Коллоидные растворы металлов, их оксидов, гидроксидов, солей. Первичные частицы дисперсной фазы не отличаются от структуры соответствующего вещества, имеют молекулярную или ионную решетку. Это высокодисперсные системы, с развитой межфазной поверхностью. От суспензий они отличаются дисперсностью. Их назвали так потому, что, они не могут длительно существовать без стабилизатора

II тип – ассоциативные (мицеллярные коллоиды) - полуколлоиды. Частицы этого типа возникают при достаточной концентрации дифильных молекул низкомолекулярных веществ в агрегаты молекул – мицеллы. Мицеллы - скопления правильно расположенных молекул, удерживаемых дисперсионными силами. Образование мицелл характерно для водных растворов моющих веществ и некоторых органических красителей. В других средах, эти вещества растворяются с образованием молекулярных растворов.
III тип - молекулярные коллоиды - лиофильными (греч «филио»- люблю). К ним относятся природные и синтетические высокомолекулярные вещества с молекулярной массой от десяти тысяч до нескольких миллионов. Молекулы этих веществ имеют размеры коллоидных частиц, поэтому такие молекулы называют макромолекулами.
Главная особенность коллоидных частиц - их малый размер d:1 нм < d < 10мкм

1) Диализ. Простейшим прибором для диализа - диализатором - является мешочек из полупроницаемого материала (коллодия), в который помещается диализируемая жидкость. Мешочек опускается в сосуд с растворителем (водой). Периодически или постоянно меняя растворитель в диализаторе можно практически полностью удалить из коллоидного раствора примеси электролитов и низкомолекулярных неэлектролитов.
^ 2) Электродиализ - процесс диализа, ускоряемый действием электрического тока. Электродиализ применяют для очистки коллоидных растворов, загрязненных электролитами. Если необходима очистки коллоидных растворов от низкомолекулярных неэлектролитов, процесс электродиализа малоэффективен. Процесс электродиализа мало отличается от обычного диализа.
^ 3) Ультрафильтрация - фильтрование коллоидных растворов через полупроницаемую мембрану, пропускающую дисперсионную среду с
низкомолекулярными примесями и задерживающую частицы дисперсной фазы или макромолекулы. Для ускорения процесса ультрафильтрации ее проводят при перепаде давления по обе стороны мембраны: под вакуумом или
повышенным давлением.
Ультрафильтрация есть не что иное, как диализ, проводимый под давлением



24) Гидрофобные коллоидно-дисперсные системы.
Гидрофобные коллоиды

дисперсные системы, в которых диспергированное вещество не взаимодействует с дисперсной средой (водой). См. Гидрофильность и гидрофобность.

Дисперсные системы, образования из двух или большего числа фаз (тел) с сильно развитой поверхностью раздела между ними. В Д. с. по крайней мере одна из фаз - дисперсная фаза - распределена в виде мелких частиц (кристалликов, нитей, плёнок или пластинок, капель, пузырьков) в другой, сплошной, фазе - дисперсионной среде. Д. с. по основной характеристике - размерам частиц или (что то же самое) дисперсности (определяемой отношением общей площади межфазной поверхности к объёму дисперсной фазы) - делятся на грубо (низко) дисперсные и тонко (высоко) дисперсные, или коллоидные системы (коллоиды). В грубодисперсных системах частицы имеют размер от 10 -4 см и выше, в коллоидных - от 10 -4 -10 -5 до 10 -7 см .

25) Электрофорез и электроосмос.

Электроосмос
Направленное перемещение жидкости в пористом теле под действием приложенной разности потенциалов называется электроосмосом. Рассмотрим, например, электроосмотическое скольжение электролита в капилляре или порах мембраны. Примем для определенности, что на поверхности адсорбированы отрицательные ионы, которые закреплены неподвижно, а положительные ионы формируют диффузную часть ДЭС. Внешнее поле Е направлено вдоль поверхности. Электростатическая сила, действующая на любой произвольный элемент диффузной части ДЭС, вызывает движение этого элемента вдоль поверхности. Поскольку плотность заряда в диффузной части ДЭС Ф(х) меняется в зависимости от расстояния до поверхности х (рис. 1), разложенные слои жидкого электролита движутся с разными скоростями. Стационарное состояние (неизменность во времени скорости течения) будет достигнуто, когда действующая на произвольный слой жидкости электростатическая сила скомпенсируется силами вязкого сопротивления, возникающими из-за различия скоростей движения слоев жидкости, находящихся на разном удалении от поверхности. Уравнения гидродинамики, описывающие движение жидкости при постоянных вязкости жидкости и ее диэлектрической проницаемости м. б. решены точно, результатом решения является распределение скорости течения:

Здесь- значение электрического потенциала на расстоянии от поверхности, где скорость течения жидкости обращается в нуль (т. наз. плоскость скольжения).

Электрофорез
Направленное перемещение частиц дисперсной фазы под действием приложенной разности потенциалов называется электрофорезом.

Электрофоретическое движение частиц в электролите имеет родственную электроосмосу природу: внешнее электрическое поле увлекает ионы подвижной части ДЭС, заставляя слои жидкости, граничащие с частицами, перемещаться относительно поверхности частиц. Однако в силу массивности объема жидкости и малости взвешенных частиц эти перемещения сводятся в отсутствие внешних сил к движению частицы в покоящейся жидкости. Для непроводящих частиц с плоской поверхностью в системах с тонкой диффузной частью ДЭС скорость электрофореза совпадает со скоростью электроосмотического скольжения, взятой с обратным знаком. Для проводящих сферических частиц скорость электрофореза м. б. рассчитана по уравнению:

где- удельная электрическая проводимость частицы.

26) Строение мицелл золей.
Строение коллоидной мицеллы

Лиофобные коллоиды обладают очень высокой поверхностной энергией и являются поэтому термодинамически неустойчивыми; это делает возможным самопроизвольный процесс уменьшения степени дисперсности дисперсной фазы (т.е. объединение частиц в более крупные агрегаты) – коагуляцию золей. Тем не менее золям присуща способность сохранять степень дисперсности – агрегативная устойчивость , которая обусловлена, во-первых, снижением поверхностной энергии системы благодаря наличию на поверхности частиц дисперсной фазы двойного электрического слоя и, во-вторых, наличием кинетических препятствий для коагуляции в виде электростатического отталкивания частиц дисперсной фазы, имеющих одноименный электрический заряд.

AgNO 3 + KI ––> AgI + KNO 3

27) Коагуляция гидрофобных золей.

Гидрофобные дисперсные системы характеризуются кинетической агрегативной устойчивостью, определяемой скоростью процесса коагуляции. Кинетика коагуляции определяется уравнением Смолуховского:

где - суммарное число частиц дисперсной фазы ко времени τ ;

Первоначальное число частиц; - время половинной коагуляции; ^ К – константа скорости коагуляции.

28) Высокомолекулярные соединения. Строение. Растворение и набухания

Растворы высокомолекулярных соединений (вмс)

Высокомолекулярными соединениями называются вещества, имеющие молекулярную массу от 10000 до нескольких миллионов а.е.м.

Размеры молекул ВМС в вытянутом состоянии могут достигать 1000 нм, т.е. соизмеримы с размерами частиц в коллоидных растворах и микрогетерогенных системах.

Температура кипения ВМС значительно выше температуры разложения, поэтому они существуют, как правило, только в жидком или твердом состоянии

Макромолекулы ВМС представляют собой гигантские образования, состоящие из сотен и тысяч атомов, химически связанных между собой.

Все ВМС по происхождению можно разделить на природные, образующиеся при биохимическом синтезе, и синтетические, получаемые искусственно путем полимеризации или поликонденсации.

В зависимости от строения полимерной цепи ВМС делятся на линейные, разветвленные и пространственные.

Подобно истинным растворам низкомолекулярных веществ растворы ВМС образуются самопроизвольно и являются термодинамически устойчивыми. В этом состоит их отличие от лиофобных коллоидных систем. Термодинамическая устойчивость обусловлена благоприятным соотношением энтальпийного и энтропийного факторов.

ВМС обладают рядом свойств, характерных для дисперсных систем: они способны образовывать ассоциаты, размер которых соизмерим с размерами частиц золей (1-100 нм), рассеивают свет, способствуют образованию эмульсий, суспензий и пен, для них характерны диффузия и броуновское движение. В то же время, в отличие от лиофобных золей в растворах ВМС отсутствует гетерогенность, т.е. нет большой межфазной поверхности.

Специфическим свойством, присущим только ВМС, является набухание при взаимодействии с растворителем. Набухание может быть ограниченным и неограниченным. Последнее приводит к растворению полимера.

Существует большое количество ВМС, которые в растворе диссоциируют с образованием высокомолекулярных ионов, они называются полиадектролитами. В зависимости от природы полимерных групп полиэлектролиты могут быть катионными, анионными и амфотерными. Последние содержат в своем составе одновременно кислотные и основные группы. В зависимости от рН среды они диссоциируют как кислоты или как основания. Состояние, при котором положительные и отрицательные заряды в молекуле белка скомпенсированы, называется изоэлектрическим, а значение рН, при котором молекула переходит в изоэлектрическое состояние, называется изо - электрической точкой белка (ИТБ).

Два метода получения дисперсных систем – диспергирование и конденсация

Диспергирование и конденсация – методы получения свободнодисперсных систем: порошков, суспензий, золей, эмульсий и т. Д. Под диспергированием понимают дробление и измельчение вещества, под конденсацией – образование гетерогенной дисперсной системы из гомогенной в результате ассоциации молекул, атомов или ионов в агрегаты.

В мировом производстве различных веществ и материалов процессы диспергирования и конденсации занимают одно из ведущих мест. Миллиарды тонн сырья и продуктов получают в свободнодисперсном состоянии. Это обеспечивает удобство их транспортирования и дозировки, а также дает возможность получать однородные материалы при составлении смесей.

В качестве примеров можно привести дробление и измельчение руд, каменного угля, производство цемента. Диспергирование происходит при сжигании жидкого топлива.

Конденсация происходит при образовании тумана, при кристаллизации.

Необходимо отметить, что при диспергировании и конденсации образование дисперсных систем сопровождается возникновением новой поверхности, т. Е. увеличением удельной площади поверхности веществ и материалов иногда в тысячи и более раз. Поэтому получение дисперсных систем, за некоторым исключением, требует затрат энергии.

При дроблении и измельчении материалы разрушаются в первую очередь в местах прочностных дефектов (макро- и микротрещин). Поэтому по мере измельчения прочность частиц возрастает, что ведет к увеличению расхода энергии на их дальнейшее диспергирование.

Разрушение материалов может быть облегчено при использовании эффекта Ребиндера адсорбционного понижения порочности твердых тел. Этот эффект заключается в уменьшении поверхностной энергии с помощью поверхностно-активных веществ, в результате чего облегчается деформирование и разрушение твердого тела. В качестве таких поверхностно-активных веществ, называемых в данном случае понизителями твердости, могут быть использованы, например, жидкие металлы для разрушения твердых металлов или типичные ПАВ.

Для понизителей твердости характерны малые количества, вызывающие эффект Ребиндера, и специфичность действия. Добавки, смачивающие материал, помогают проникнуть среде в места дефектов и с помощью капиллярных сил также облегчают разрушение твердого тела. Поверхностно-активные вещества не только способствуют разрушению материала, но и стабилизируют дисперсное состояние, препятствуя слипанию частиц.

Системы с максимальной степенью дисперсности могут быть получены только с помощью конденсационных методов.

Коллоидные растворы можно получать также и методом химической конденсации , основанном на проведении химических реакций, сопровождающихся образованием нерастворимых или малорастворимых веществ. Для этой цели используются различные типы реакций – разложения, гидролиза, окислительно-восстановительные и т.д.

Очистка дисперсных систем.

Золи и растворы высокомолекулярных соединений (ВМС) содержат в виде нежелательных примесей низкомолекулярные соединения. Их удаляют следующими методами.

Диализ. Диализ был исторически первым методом очистки. Его предложил Т. Грэм (1861). Схема простейшего диализатора показана на рис. 3 (смотри приложение). Очищаемый золь, или раствор ВМС, заливают в сосуд, дном которого служит мембрана, задерживающая коллоидные частицы или макромолекулы и пропускающая молекулы растворителя и низкомолекулярные примеси. Внешней средой, контактирующей с мембраной, является растворитель. Низкомолекулярные примеси, концентрация которых в золе или макромолекулярном растворе выше, переходят сквозь мембрану во внешнюю среду (диализат). На рисунке направление потока низкомолекулярных примесей показано стрелками. Очистка идет до тех пор, пока концентрации примесей в золе и диализате не станут близкими по величине (точнее, пока не выравняются химические потенциалы в золе и диализате). Если обновлять растворитель, то можно практически полностью избавиться от примесей. Такое использование диализа целесообразно, когда цель очистки – удаление всех низкомолекулярных веществ, проходящих сквозь мембрану. Однако в ряде случаев задача может оказаться сложнее – необходимо освободиться только от определенной части низкомолекулярных соединений в системе. Тогда в качестве внешней среды применяют раствор тех веществ, которые необходимо сохранить в системе. Именно такая задача ставится при очистке крови от низкомолекулярных шлаков и токсинов (солей, мочевины и т.п.).

Ультрафильтрация. Ультрафильтрация – метод очистки путем продавливания дисперсионной среды вместе с низкомолекулярными примесями через ультрафильтры. Ультрафильтрами служат мембраны того же типа, что и для диализа.

Простейшая установка для очистки ультрафильтрацией показана на рис. 4 (смотри приложение). В мешочек из ультрафильтра наливают очищаемый золь или раствор ВМС. К золю прилагают избыточное по сравнению с атмосферным давление. Его можно создать либо с помощью внешнего источника (баллон со сжатым воздухом, компрессор и т. П.), либо большим столбом жидкости. Дисперсионную среду обновляют, добавляя к золю чистый растворитель. Чтобы скорость очистки была достаточно высокой, обновление проводят по возможности быстро. Это достигается применением значительных избыточных давлений. Чтобы мембрана могла выдержать такие нагрузки, ее наносят на механическую опору. Такой опорой служат сетки и пластинки с отверстиями, стеклянные и керамические фильтры.

Микрофильтрация . Микрофильтрацией называется отделение с помощью фильтров микрочастиц размером от 0,1 до 10 мкм. Производительность микрофильтрата определяется пористостью и толщиной мембраны. Для оценки пористости, т. Е. отношения площади пор к общей площади фильтра, используют разнообразные методы: продавливание жидкостей и газов, измерение электрической проводимости мембран, продавливание систем, содержащих калиброванные частицы дисперсионной фазы, и пр.

Микропористые фильтры изготовляют из неорганических веществ и полимеров. Спеканием порошков можно получить мембраны из фарфора, металлов и сплавов. Полимерные мембраны для микрофильтрования чаще всего изготовляют из целлюлозы и ее производных.

Электродиализ. Очистку от электролитов можно ускорить, применяя налагаемую извне разность потенциалов. Такой метод очистки называется электродиализом. Его использование для очистки различных систем с биологическими объектами (растворы белков, сыворотка крови и пр.) началось в результате успешных работ Доре (1910). Устройство простейшего электродиализатора показано на рис. 5(смотри приложение). Очищаемый объект (золь, раствор ВМС) помещают в среднюю камеру 1, а в две боковые камеры наливают среду. В катодную 3 и анодную 5 камеры ионы проходят сквозь поры в мембранах под действием приложенного электрического напряжения.

Электродиализом наиболее целесообразно очищать тогда, когда можно применять высокие электрические напряжения. В большинстве случаев на начальной стадии очистки системы содержат много растворенных солей, и их электрическая проводимость высока. Поэтому при высоком напряжении может выделяться значительное количество теплоты, и в системах с белками или другими биологическими компонентами могут произойти необратимые изменения. Следовательно, электродиализ рационально использовать как завершающий метод очистки, применив предварительно диализ.

Комбинированные методы очистки. Помимо индивидуальных методов очистки – ультрафильтрации и электродиализа – известна их комбинация: электроультрафильтрация, применяемая для очистки и разделения белков.

Очистить и одновременно повысить концентрацию золя или раствора ВМС можно с помощью метода, называемого электродекантацией. Метод предложен В. Паули. Электродекантация происходит при работе электродиализатора без перемешивания. Частицы золя или макромолекулы обладают собственным зарядом и под действием электрического поля перемещаются в направлении одного из электродов. Так как они не могут пройти через мембрану, то их концентрация у одной из мембран возрастает. Как правило, плотность частиц отличается от плотности среды. Поэтому в месте концентрирования золя плотность системы отличается от среднего значения (обычно с ростом концентрации растет плотность). Концентрированный золь стекает на дно электродиализатора, и в камере возникает циркуляция, продолжающаяся до практически полного удаления частиц.

Коллоидные растворы и, в частности, растворы лиофобных коллоидов, очищенные и стабилизированные могут, несмотря на термодинамическую неустойчивость, существовать неопределенно долгое время. Растворы красного золя золота, приготовленные Фарадеем, до сих пор не подверглись никаким видимым изменениям. Эти данные позволяют считать, что коллоидные системы могут находиться в метастабильном равновесии.

Цель работы : ознакомиться с различными методами получения дисперсных систем.

Краткое теоретическое введение.

Способы получения дисперсных систем можно разделить на две группы: методы диспергирования и методы конденсации.

Методы диспергирования основаны на дроблении крупных кусков вещества до требуемой степени дисперсности. Эти методы чаще применяются для получения суспензий и эмульсий Системы с размерами частиц 10 -6 – 10 -7 см получают методами конденсации. Методы конденсации представляют собой объединение молекул или ионов до размеров коллоидных частиц, следствием чего является возникновение границы раздела фаз.

Для получения дисперсных систем любым из этих методов необходимо выполнение следующих условий:

а) нерастворимость или ограниченная растворимость дисперсной фазы в дисперсионной среде;

б) наличие в системе стабилизатора, который должен обеспечить устойчивость взвешенных частиц и приостановить их рост.

Методы диспергирования.

Затрачивая работу против молекулярных сил сцепления, можно различными способами достичь нужной степени дисперсности.

1. Механическое диспергирование.

Способ заключается в энергичном и продолжительном растирании, размалывании или распыливании вещества дисперсной фазы и смешивании его с жидкостью, которая служит дисперсионной средой. Крупные частицы дробят, пользуясь ступками, коллоидными мельницами, краскотёрками. Способом механического диспергирования получают фармацевтические препараты, смазочные материалы, пищевые продукты.

2. Диспергирование ультразвуком.

В основе метода лежит использование ультразвуковых колебаний (более 20000 колебаний в секунду). Диспергирование при помощи ультразвука эффективно лишь для веществ, имеющих небольшую прочность: сера, графит, краски, крахмал, каучук, желатин. Очень легко получаются этим методом эмульсии, например, эмульсии какао, высококачественные кремы и др.

Методы конденсации.

В основе конденсационных методов лежат процессы образования частиц дисперсной фазы из веществ, находящихся в молекулярном или ионном состоянии. Процессы эти могут носить как физический, так и химический характер.

Физическая конденсация.

1. Метод замены растворителя.

Сущность метода заключается в том, что растворитель, в котором вещество растворяется, образуя истинный раствор, заменяется растворителем, в котором это вещество нерастворимо. Например, если спиртовой раствор серы, фосфора или канифоли влить в воду, то раствор становится насыщенным, происходит конденсация, и образуются частицы дисперсной фазы. Это происходит потому, что указанные вещества плохо растворяются в водно-спиртовой смеси.

2. Конденсация при охлаждении пара.

Наиболее наглядный пример конденсации из паров – образование тумана или дыма. Другим примером возникновения коллоидных частиц в результате конденсации пара можно назвать камеру Вильсона, используемую в ядерной физике.

Химическая конденсация.

Получение дисперсных систем методами химической конденсации сводится к образованию молекул нерастворимых веществ в результате химической реакции с последующим укрупнением их до размеров коллоидных частиц. Химические конденсационные методы классифицируются в зависимости от типа химической реакции, лежащей в основе получения золя. К числу реакций, в результате которых при соответствующих условиях могут образовываться вещества в коллоидном состоянии, относятся реакции окисления, восстановления, обмена, гидролиза.

1.Реакции окисления.

Пример окислительной реакции – окисление сероводорода в водной среде:

H 2 S + O 2 = 2S + 2H 2 O

2.Реакции обмена.

Примером такой реакции является образование золя сульфида мышьяка (III):

As 2 O 3 + 3H 2 S = As 2 S 3 + 3H 2 O

3. Реакции гидролиза.

Гидролиз чаще всего используется для получения золей гидроксидов металлов:

FeCl 3 + 3H 2 O = Fe(OH) 3 + 3HCl

Метод пептизации.

Пептизацией называется процесс перехода в коллоидный раствор осадков, образовавшихся при коагуляции. Вызвать пептизацию можно промыванием коагулята растворителем, а также воздействием пептизаторов (электролитов, неэлектролитов, поверхностно-активных веществ, высокомолекулярных соединений). Пептизировать можно только свежеполученные осадки, в которых не прошли явления кристаллизации и частицы не потеряли своей индивидуальности.

Экспериментальная часть.

I. Методы физической конденсации .

Опыт 1 . Получение золя серы методом замены растворителя.

В пробирку наливают 10 мл дистиллированной воды, добавляют 5 капель раствора серы в этаноле и энергично перемешивают содержимое пробирки. Образуется прозрачный опалесцирующий золь. Сера растворима в спирте, но нерастворима в воде. При замене спирта водой молекулы растворённого вещества соединяются в агрегаты коллоидных размеров.

Для наблюдения эффекта Фарадея-Тиндаля пробирку с коллоидным раствором помещают на пути луча света проекционного фонаря. Рассматривают пробирку под углом 90 0 к направлению падающего луча.



Поделиться: