Факторы роста пример в микробиологии. Какие факторы способствуют росту и развитию бактерий в различных средах

Типы питания. Микроорганизмы нуждают­ся в углеводе, азоте, сере, фосфоре, калии и других элементах. В зависимости от источников углерода для питания бактерии делятся на аутотрофы , использующие для построения своих клеток диоксид углерода С0 2 и другие неорганические соединения, и гетеротрофы , питающиеся за счет готовых органических соединений. Аутотрофными бактериями являются нитрифицирующие бактерии, находящиеся в почве; серобактерии, обитающие в воде с сероводородом; железобак­терии, живущие в воде с закисным железом, и др.

В зависимости от окисляемого субстрата , называемого доно­ром электронов или водорода, микроорганизмы делят на две группы. Микроорганизмы, использующие в качестве доноров во­дорода неорганические соединения, называют литотрофны-ми (от греч. lithos - камень), а микроорганизмы, использую­щие в качестве доноров водорода органические соединения, - органотрофами.

Учитывая источник энергии , среди бактерий различают фототрофы, т.е. фотосинтезирующие (например, сине-зеленые во­доросли, использующие энергию света), и хемотрофы, нуж­дающиеся в химических источниках энергии.

Механизмы питания. Поступление различных веществ в бак­териальную клетку зависит от величины и растворимости их мо­лекул в липидах или воде, рН среды, концентрации веществ, различных факторов проницаемости мембран и др. Клеточная стенка пропускает небольшие молекулы и ионы, задерживая мак­ромолекулы массой более 600 Д. Основным регулятором поступ­ления веществ в клетку является цитоплазматическая мембрана. Условно можно выделить четыре механизма проникновения пи­тательных веществ в бактериальную клетку : это простая диффу­зия, облегченная диффузия, активный транспорт, транслокация групп.



Наиболее простой механизм поступления веществ в клетку - простая диффузия , при которой перемещение веществ про­исходит вследствие разницы их концентрации по обе стороны цитоплазматической мембраны. Вещества проходят через липид-ную часть цитоплазматической мембраны (органические молеку­лы, лекарственные препараты) и реже по заполненным водой каналам в цитоплазматической мембране. Пассивная диффузия осуществляется без затраты энергии.

Облегченная диффузия происходит также в результате разницы концентрации веществ по обе стороны цитоплазмати­ческой мембраны. Однако этот процесс осуществляется с помо­щью молекул-переносчиков, локализующихся в цитоплазматичес­кой мембране и обладающих специфичностью. Каждый перенос­чик транспортирует через мембрану соответствующее вещество или передает другому компоненту цитоплазматической мембра­ны - собственно переносчику. Белками-переносчиками могут быть пермеазы, место синтеза которых - цитоплазматичес­кая мембрана. Облегченная диффузия протекает без затраты энер­гии, вещества перемещаются от более высокой концентрации к более низкой.

Активный транспорт происходит с помощью пермеаз и направлен на перенос веществ от меньшей концентрации в сто­рону большей, т.е. как бы против течения, поэтому данный про цесс сопровождается затратой метаболической энергии (АТФ), образующейся в результате окислительно-восстановительных ре­акций в клетке.

Перенос (транслокация) групп сходен с активным транспортом, отличаясь тем, что переносимая молекула видо­изменяется в процессе переноса, например фосфорилируется. Выход веществ из клетки осуществляется за счет диффузии и при участии транспортных систем.

Факторы роста бактерий: витамины, АК, пуриновые и пиримидиновые основания, липиды.

Ауксотрофы - организмы, которые не способны синтезировать определенное органическое соединение, необходимое для роста этого организма. Ауксотрофия - характеристика подобных организмов, этот термин противоположен прототрофии. Без добавления в питательную среду этого вещества ауксотрофы не растут. Гемолитический стрептококк

Прототрофы, наоборот, неприхотливые бактерии. (Стаф. Ауреус)

8. Питательные среды. Искусственные питательные среды: простые, сложные, общего назначения, элективные, дифференциально-диагностические.

Питательная среда - среда, содер­жащие различные соединения сложного или простого состава, которые применяются для размножения бактерий или других микроорганизмов в лабораторных или промышленных условиях.

В бактериологической практике чаще всего используют сухие питательные среды, которые получают на основе достижений современной биотехнологии. Для их приготовления используют экономически рентабельное непищевое сырье: утратившие срок годности кровезаменители (гидролизин-кислотный гидролизат крови животных, аминопептид - ферментативный гидролизат крови; продукты биотехнологии (кормовые дрожжи, кормовой лизин, виноградная мука, белколизин). Сухие питательные среды могут храниться в течение длительного времени, удобны при транспортировке и имеют относительно стандартный состав.

По консистенции питательные среды могут быть жид­кими, полужидкими, плотными. Плотные среды готовят путем до­бавления к жидкой среде 1,5-2% агара, полужидкие - 0,3- 0,7 % агара. Агар представляет собой продукт переработки осо­бого вида морских водорослей, он плавится при температуре 80-86 °С, затвердевает при температуре около 40 °С и в застыв­шем состоянии придает среде плотность. В некоторых случаях для получения плотных питательных сред используют желатин (10-15%). Ряд естественных питательных сред (свернутая сы­воротка крови, свернутый яичный белок) сами по себе являются плотными.

По целевому назначению среды подразделяют на основные, элективные и дифференци­ально-диагностические.

К основным относятся среды, применяемые для выращивания многих бактерий. Это триптические гидролизаты мясных, рыбных продуктов, крови животных или казеина, из которых готовят жидкую среду - питательный бульон и плотную - пита­тельный агар. Такие среды служат основой для приготов­ления сложных питательных сред - сахарных, кровяных и др., удовлетворяющих пищевые потребности патогенных бак­терий.

Элективные питательные среды предназначены для избира­тельного выделения и накопления микроорганизмов определен­ного вида (или определенной группы) из материалов, содержа­щих разнообразную постороннюю микрофлору. При создании элективных питательных сред исходят из биологических особен­ностей, которые отличают данные микроорганизмы от большин­ства других. Например, избирательный рост стафилококков на­блюдается при повышенной концентрации хлорида натрия, хо­лерного вибриона - в щелочной среде и т. д.

Дифференциально-диагностические питательные среды при­меняются для разграничения отдельных видов (или групп) мик­роорганизмов. Принцип построения этих сред основан на том, что разные виды бактерий различаются между собой по биохи­мической активности вследствие неодинакового набора фермен­тов.

Особую группу составляют синтетические и полусинтетиче­ские питательные среды . В состав синтетических сред входят химически чистые вещества: аминокислоты, минеральные соли, углеводы, витамины. В полусинтетические среды дополнительно включают пептон, дрожжевой экстракт и другие питательные вещества. Эти среды чаще всего применяют в научно-исследова­тельской работе и в микробиологической промышленности при получении антибиотиков, вакцин и других препаратов.

Бактериологический метод изучения микроорганизмов. Принципы и методы выделения чистых культур аэробных и анаэробных бактерий. Характер роста микроорганизмов на жидких и плотных питательных средах.

Для того чтобы культура микроорганизмов могла нормально расти, размножаться и осуществлять биосинтез какого-либо вещества, необходимо соблюдать оптимальные параметры окружающей среды. При неблагоприятных условиях изменяются свойства микроорганизмов, подавляется их жизнедеятельность или происходит гибель. Различают три кардинальные точки , которые определяют развитие микроорганизмов:

- минимум __ жизнедеятельность культуры только начинается;

- максимум __ жизнедеятельность уже прекращается;

- оптимум __ жизнедеятельность проявляется с наибольшей интенсивностью.

На рост и развитие микроорганизмов влияют физические, химические и биологические факторы.

Физические __ температура, влажность среды, концентрация питательных веществ.

Температура . Каждая группа микроорганизмов развивается в определенных температурных пределах. По отношению к оптимальной температуре развития все микроорганизмы делят на три группы: психрофилы, мезофилы и термофилы.

Психрофилы __ минимальная температура развития от минус 7 до 0 °С; оптимальная 15-20 °С; максимальная 30-35 °С.

Мезофилы __ минимальная температура их развития 5-10 °С; оптимальная 25-35 °С; максимальная 40-50 °С. К этой группе относится большинство используемых в промышленности микроорганизмов, как культурных, так и вредных.

Термофилы __ минимальная температура развития не менее 30 °С; оптимальная 45-60 °С; максимальная 70-80 °С.

Температуры, превышающие максимальные, приводят к гибели микроорганизмов за счет тепловой коагуляции белков клетки и инактивации ферментов. При температуре 70°С большинство вегетативных форм микроорганизмов гибнет за 1-5 мин.

Температуры ниже минимальных гибель микроорганизмов не вызывают, а только приостанавливают их жизнедеятельность.

Влажность среды . Нормальное функционирование клетки (обмен веществ, рост и размножение) возможно только тогда, когда в ней содержится достаточное количество влаги и сама клетка погружена в водную среду с растворенными в ней питательными веществами.

Бактерии развиваются при минимальной влажности субстрата 25-30 %, грибы и дрожжи __ 10-15 %, а иногда и 6-7 %.

При снижении влажности уменьшается интенсивность биохимических реакций и, следовательно, жизненных процессов. От влажности среды зависит устойчивость микроорганизмов к высоким температурам. В среде с повышенной влажностью гибель их происходит быстрее, чем в воздушной среде.

Концентрация питательных веществ . Влияние этого фактора на жизнедеятельность микроорганизмов связано с явлением осмоса.

Осмос __ перенос веществ через полупроницаемую перегородку (в частности, через цитоплазматическую мембрану клетки). Осуществляется благодаря разнице осмотических давлений, которые создаются растворенными веществами, по обе стороны перегородки. Вода движется со стороны меньшего осмотического давления в сторону большего, растворенные вещества __ наоборот. Этим объясняется проникновение вещества в клетку даже при очень малой его концентрации в среде.

Высокие концентрации любых питательных веществ создают высокое осмотическое давление во внешней среде, которое значительно превышает осмотическое давление внутри клетки. Вода при этом выходит из клетки наружу, в результате чего она обезвоживается, протоплазма отделяется от стенки. Это явление называется плазмолиз.

Если среда сильно разбавлена (имеет низкое осмотическое давление), то вода из среды поступает в клетку, она набухает и такое состояние называется плазмоптисом . В конечном счете, клетка может разорваться.

Плазмолиз и плазмоптис при определенных условиях являются обратимыми процессами.

Для обеспечения нормального поступления питательных веществ в клетку, необходимо поддерживать ее в состоянии тургора , когда осмотическое давление в среде чуть меньше осмотического давления внутри клетки. В этом случае вода, проникая в клетку, создает определенное напряжение клеточной оболочки, и протоплазма оказывается прижатой к внутренней стенке.

Содержимое клетки по осмотическому давлению эквивалентно 10-20 %-му раствору сахарозы.

Минимальной для активного обмена веществ является приблизительно 0,5 %-ная концентрация сахара или соли в воде. Некоторые микроорганизмы могут сохранять свою жизнедеятельность в концентрированных растворах (с высоким осмотическим давлением). Такие микроорганизмы называются осмофильными .

К химическим факторам , которые влияют на жизнедеятельность микроорганизмов, относятся: рН среды, окислительно-восстановительный потенциал (гН 2) и присутствие в среде токсичных веществ.

рН среды . Выражает степень кислотности или щелочности среды. Колебания рН могут вызвать изменение активности ферментов, обмена веществ. Например, в кислой среде дрожжи образуют этиловый спирт, в щелочной - глицерин.

Каждая группа микроорганизмов существует в определенном интервале рН. Дрожжи и плесневые грибы хорошо развиваются в слабокислой среде (рН 4-6), бактерии __ в нейтральной или слабощелочной (рН 6,5-7,5).

Окислительно-восстановительные условия среды . Большое значение для жизнедеятельности микроорганизмов имеет кислород. Для некоторых микроорганизмов он жизненно необходим, для других является ядом. Окислительно-восстановительный потенциал выражается редокс-потенциалом (гН 2) __ _ отрицательным логарифмом концентрации молекулярного водорода, который характеризует степень окисленности (аэробности) или восстановленности (анаэробности) среды. гН 2 лежит в пределах от 0 до 41. В водном растворе, насыщенном кислородом, гН 2 равен 41, а в условиях насыщения водородом гН 2 равен 0.

По отношению к редокс-потенциалу микроорганизмы подразделяют на:

облигатные аэробы - живут только в присутствии кислорода и получают энергию за счет дыхания;

облигатные анаэробы - микроорганизмы, которые растут в среде, лишенной кислорода, так как он для них токсичен. Получают энергию за счет брожения (окислительно-восстановительных процессов, которые протекают без участия кислорода воздуха);

факультативные анаэробы и аэробы могут жить как при доступе, так и в отсутствие кислорода, переходя с дыхания на брожение.

Для облигатных аэробов гН 2 находится в пределах 14-30, для облигатных анаэробов гН 2 __ 0-14, для факультативных анаэробов гН 2 от 0 до 20.

Действие химических веществ . Многие вещества замедляют и подавляют действие микроорганизмов. К ним относятся: спирты, фенолы, альдегиды (особенно формальдегид), нитраты, пестициды, кислоты (бензойная, сернистая, сорбиновая, борная, фтористоводородная), щелочи, соли тяжелых металлов (ртути, меди, серебра), окислители (KМnО 4 ,J,C1, Н 2 О 2), газы (сернистый, диоксид углерода). Эффективность действия их на микроорганизмы зависит от химической природы, применяемой концентрации, условий среды (рН, температуры) и вида микроорганизмов. Как правило, высокие дозы этих веществ оказывают летальное действие, а малые дозы в некоторых случаях могут даже являться стимуляторами роста микроорганизмов.

Симбиоз __ два или более вида организма совместно развиваются лучше, чем по отдельности (например, бобовые растения и клубеньковые бактерии; молочнокислые бактерии и дрожжи в производстве кваса).

Метабиоз __ жизнедеятельность одного организма способствует развитию другого (например, продукты обмена одного микроорганизма являются источником питания для другого).

Антагонизм __ один вид организма угнетает или вызывает гибель другого за счет быстрого размножения или выделения в среду метаболитов (например, антибиотиков, микотоксинов).

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Бактериальные факторы роста - необходимые для жизнедеятельности бактериальной клетки органические вещества, которые она не способна синтезировать самостоятельно и должна получать в готовом виде. Бактериальные факторы роста - соединения различной химической природы; большинство из них относится к водорастворимым витаминам группы В; функции Б. ф. р. несут также гемин, холин, пуриновые и пиримидиновые основания и многие аминокислоты. Отсутствие в среде Б. ф. р. приводит к бактериостатическому эффекту - который в ряде случаев сопровождается цитологическими изменениями. Бактериальные факторы роста не служат для микробной клетки пластическими или энергетическими материалами и используются бактериями в ничтожных количествах в неизмененном виде. Некоторые факторы в качестве активных групп (коферментов) входят в структуру различных клеточных энзимов.

К важнейшим бактериальным факторам роста относятся: тиамин (витамин B1) - составная часть некоторых коферментов, играющих важную роль в углеводном обмене; рибофлавин (витамин В2)-участвует в окислительно-восстановительных процессах; пантотеновая кислота - участвует в построении ферментных систем бактериальной клетки, в частности кофермента А; пиридоксин (витамин В6) - производные этого фактора роста играют важную роль в обмене аминокислот; витамин В12 - входит в состав активной группы ферментов, участвующих в реакциях синтеза нуклеотидов; фолиевая кислота - в виде одного из своих производных входит в состав ферментов, катализирующих процессы синтеза пуриновых и пиримидиновых оснований, а также некоторых аминокислот; аминокислоты - служат компонентами клеточных белков; некоторые из них выполняют и биокаталитические функции.

Потребность бактерий в различных бактериальных факторы роста разнообразна: у большинства сапрофитов она сводится к минимуму, тогда как патогенные микробы (возбудители бруцеллеза, дифтерии, туляремии и др.) могут расти только на синтетических средах, содержащих многие аминокислоты и другие вещества.

Азотфикса́ция, или азотофиксация - фиксация молекулярного атмосферного азота, диазотрофия. Процесс восстановления молекулы азота и включения её в состав своей биомассы прокариотными микроорганизмами. Важнейший источник азота в биологическом круговороте. В наземных экосистемах азотфиксаторы локализуются в основном в почве.

Различают три типа азотфиксации:

  • Свободноживущими бактериями самых разнообразных таксономических групп.
  • Ассоциативная азотфиксация бактериями, находящимися в тесной связи с растениями (в прикорневой зоне или на поверхности листьев) и использующие их выделения (корневые выделения составляют до 30 % продукции фотосинтеза) как источник органического вещества. Азотфиксаторы живут в кишечнике многих животных (жвачные, грызуны, термиты) и человека (род Escherichia).
  • Симбиотическая. Наиболее известен симбиоз клубеньковых бактерий (сем. Rhizobiaceae) с бобовыми растениями. Обычно происходит корневое заражение, но известны растения, образующие клубеньки на стеблях и листьях.

Созданы бактериальные удобрения (например, нитрагин) для инокуляции (заражения) штаммами клубеньковых бактерий семян бобовых культур, что увеличивает их урожайность. Также для стимулирования процессов азотфиксации полезно вносить в почву небольшие «стартовые» дозы азотных удобрений, в то время как большие их дозы подавляют процесс.

21. Питание бактерий. Типы питания. Механизмы переноса веществ в клетку. Факторы роста микроорганизмов.

Как у всего живого, метаболизм микроорганизмов состоит из двух взаимосвязанных, одновременно протекающих, но противоположных процессов - анаболизма, или конструктивного метаболизма, и катаболизма, или энергетического метаболизма.

Обмен веществ у микроорганизмов имеет свои особенности.

    Быстрота и интенсивность обменных процессов. За сутки микробная клетка может переработать такое количество питательных веществ, которое превышает ее собственный вес в 30-40 раз.

    Выраженная приспособляемость к изменяющимся условиям внешней среды.

    Питание осуществляется через всю поверхность клетки. Прокариоты не проглатывают питательные вещества, не переваривают их внутри клетки, а расщепляют их вне клетки с помощью экзоферментов до более простых соединений, которые транспортируются в клетку.

Для роста и жизнедеятельности микроорганизмов обязательно наличие в среде обитания питательных материалов для построения компонентов клетки и источники энергии. Для микробов необходимы вода, источники углерода, кислорода, азота, водорода, фосфора, калия, натрия и других элементов. Требуются также микроэлементы: железо, марганец, цинк, медь для синтеза ферментов. Различные виды микробов нуждаются в тех или иных факторах роста, таких, как витамины, аминокислоты, пуриновые и пиримидиновые основания.

В зависимости от способности усваивать органические или неорганические источники углерода и азота микроорганизмы делятся на две группы - аутотрофов и гетеротрофов.

Аутотрофы (греч. autos - сам, trophic - питающийся) получают углерод из углекислоты (СО 2 ) или ее солей. Из простых неорганических соединений они синтезируют белки, жиры, углеводы, ферменты.

В зависимости от источников энергии и природы доноров микроорганизмы подразделяют на фототрофы (фотосинтезирующие), способные использовать солнечную энергию, и хемотрофы (хемосинтезирующие), получающие энергию за счет окислительно – восстановительных реакций. К фототрофам относятся исключительно сапрофитные микроорганизмы. В патологии человека ведущую роль играют хемосинтезирующие микроорганизмы.

В зависимости от природы доноров электронов хемотрофы подразделяются на хемолитотрофы (хемоавтотрофы) и хемоорганотрофы (хемогетеротрофы).

В зависимости от источников азота – прототрофы – микроорганизмы, способные синтезировать все необходимые им органические соединения (углеводы, АК и др.) из глюкозы и солей аммония. Ауксотрофы – микроорганизмы, не способные синтезировать какое – либо из указанных соединений. Они ассимилируют эти соединения и другие факторы роста в готовом виде из окружающей среды или организма хозяина.

Транспорт питательных веществ

Через клеточную стенку и цитоплазматическую мембрану внутрь клетки прокариотов проникают только небольшие молекулы, поэтому белки, полисахариды и другие биополимеры вначале расщепляются экзоферементами до более простых соединений, которые транспортируются внутрь клетки.

Проникновение питательных веществ в клетку происходит с помощью различных механизмов.

Пассивная диффузия - вещества поступают в клетку за счет диффузии по градиенту концентрации, то есть вследствие того, что концентрация вне клетки выше, чем внутри.

Облегченная диффузия - также совершается по градиенту концентрации, но с участием ферментов-переносчиков, так называемых пермеаз. Этот фермент присоединяет к себе молекулы вещества на внешней стороне цитоплазматической мембраны и отдает его на внутренней стороне в неизмененном виде. Затем свободный переносчик перемещается снова к наружной стороне мембраны, где связывает новые молекулы вещества. При этом каждая пермеаза переносит какое-то определенное вещество.

Эти два механизма переноса не требуют энергетических затрат.

Активный перенос происходит также с участием пермеаз, причем осуществляется против градиента концентрации. Микробная клетка может накопить вещество в концентрации, в тысячи раз превышающих ее во внешней среде. Такой процесс требует затрат энергии, то есть расходуется АТФ.

Транслокация радикалов - это четвертый механизм передачи веществ. Это активный перенос химически измененных молекул, с участием пермеаз. Например, такое простое вещество, как глюкоза, переносится в фосфорилированном виде.

Выход веществ из бактериальной клетки происходит путем пассивной диффузии или путем облегченной диффузии с участием пермеаз.

Факторы роста микроорганизмов:

К факторам роста относят аминокислоты, пуриновые и пиримидиновые основания, липиды, витамины, железопорфирины (гем) и другие соединениями. Некоторые микроорганизмы самостоятельно синтезируют необходимые им ростовые факторы, другие получают их в готовом виде из окружающей среды. Потребность того или другого микроорганизма в определенных ростовых факторах является стабильным признаком, который используется для дифференциации и идентификации бактерий, а также при изготовлении питательных сред для лабораторных и биотехнологических целей.

Аминокислоты. Многие микроорганизмы, особенно бактерии, нуждаются в тех или других аминокислотах (одной или нескольких), поскольку они не могут их самостоятельно синтезировать, например клостридии - в лейцине, тирозине, стрептококки - в лейцине, аргинине и др. Такого рода микроорганизмы называются ауксотрофными по тем аминокислотам или другим соединениям, которые они не способны синтезировать.

Пуриновые и пиримидиновые основания и их производные (аденин, гуанин, цитозин, урацил, тимин и др.) являются факторами роста для разных видов стрептококков, некоторые азотистые основания нужны для роста стафилококков и других бактерий. В нуклеотидах нуждаются некоторые виды микоплазм.

Липиды, в частности компоненты фосфолипидов - жирные кислоты, нужны для роста некоторых стрептококков, микоплазм. Все виды микоплазм ауксотрофны по холестерину и другим сте-ринам, что отличает их от других прокариот. Эти соединения входят в состав их цитоплазматической мембраны.

Витамины, главным образом группы В, входят в состав ко-ферментов или их простетических групп. Многие бактерии ауксотрофны по определенным витаминам. Например, коринебактерии дифтерии, шигеллы нуждаются в никотиновой кислоте или ее амиде, который входит в состав НАД и НАДФ, золотистый стафилококк, пневмококк, бруцеллы - тиамине (ВО, входящем в состав пирофосфата, некоторые виды стрептококков, бациллы столбняка - в пантотеновой кислоте, являющейся составной частью кофермента КоА и т. д. Кроме того, факторами роста для многих бактерий являются фолиевая кислота, биотин, а также темы - компоненты цитохромов. Последние необходимы гемофильным бактериям, микобактериям туберкулеза и др.

Биологическое окисление (энергетический метаболизм)

Процесс биологического окисления дает энергию, необходимую для жизни клетки. Сущность процесса заключается в последовательном окислении субстратов с постепенным освобождением энергии. Энергия запасается в молекулах АТФ.

Окислению подвергаются углеводы, спирты, органические кислоты, жиры и другие вещества. Но для большинства микроорганизмов источником энергии служат гексозы, в частности, глюкоза.

У микроорганизмов существует два типа биологического окисления: аэробный и анаэробный. При аэробном типе участвует кислород, и этот процесс называется дыханием в строгом смысле слова. При анаэробном типе биологического окисления освобождение энергии из органических молекул происходит без участия кислорода и называется брожением.

Начальный этап анаэробного расщепления глюкозы с образованием пировиноградной кислоты (ПВК) происходит одинаково. Эта

кислота является тем центральным пунктом, от которого расходятся пути дыхания и многих видов брожений.

При аэробном типе дыхания пировиноградная кислота вступает в цикл трикарбоновых кислот. Водород ПВК поступает в дыхательную цепь. Это цепь окислительных ферментов (цитохромы и цитохромоксидаза). По цепи цитохромов передается водород и присоединяется к активированному под действием цитохромоксидазы кислороду с образованием воды. Конечные продукты аэробного окисления глюкозы - диоксид углерода (углекислота) и вода. В процессе дыхания на одну молекулу глюкозы образуется 38 молекул АТФ.

При анаэробном типе биологического окисления энергия образуется в результате брожений. При спиртовом брожении ПВК превращается в конечном итоге в спирт и углекислоту. Конечным продуктом молочнокислого брожения является молочная кислота, маслянокислого брожения - масляная кислота. При процессах брожения на одну молекулу глюкозы образуется только 2 молекулы АТФ.

Микробную природу брожений впервые открыл и доказал Пастер. Изучая маслянокислое брожение, Пастер впервые столкнулся с возможностью жизни без кислорода, то есть с анаэробиозом. Он также установил явление, которое впоследствии было названо "эффектом Пастера": прекращение процесса брожения при широком доступе кислорода.

Анаэробиоз существует только среди прокариотов. Все микроорганизмы по типу дыхания делятся на следующие группы: облигатные аэробы, облигатные анаэробы, факультативные анаэробы, микроаэрофилы.

Облигатные аэробы размножаются только при наличии свободного кислорода. К ним можно отнести микобактерии туберкулеза, холерный вибрион, чудесную палочку. ,

Облигатные или строгие анаэробы получают энергию при отсутствии доступа кислорода. Они имеют неполный набор окислительно-восстановительных ферментов, у них нет цитохромной системы, поэтому у них не происходит полного окисления субстрата (глюкозы) до конечных продуктов - СО 2 и Н 2 О. Более того, в присутствии свободного кислорода образуются токсические соединения: перекись водорода Н 2 О 2 и свободный перекисный радикал кислорода О 2 . Аэробы при этом не погибают, так как продуцируют ферменты, разрушающие эти токсические соединения (супероксиддисмутазу и каталазу). Спорообразующие анаэробы в этих условиях прекращают размножение и превращаются в споры. Неспорообразующие анаэробы погибают даже при кратковременном контакте с кислородом.

К облигатным спорообразующим анаэробам относятся клостридии столбняка, ботулизма, анаэробной раневой инфекции; к неспорообразующим анаэробам - бактероиды, пептобактерии, бифидумбактерии.

Большинство патогенных бактерий - факультативные (условные) анаэробы, например, энтеробактерии. Они имеют полный набор ферментов и при широком доступе кислорода окисляют глюкозу до конечных продуктов; при низком содержании кислорода они вызывают брожение.

Микроаэрофилы размножаются в присутствии небольших количеств кислорода. Например, кампилобактеры могут размножаться при 3-6% кислорода.

Рост и размножение микроорганизмов

Термином "рост" обозначают увеличение размеров отдельной особи, а "размножение" - увеличение числа особей в популяции.

Бактерии размножаются путем бинарного деления пополам, реже путем почкования. У грамположительных бактерий из клеточной стенки и цитоплазматической мембраны образуется перегородка, врастающая внутрь. У грамотрицательных бактерий образуется перетяжка, и затем происходит разделение клетки на две особи.

Делению клеток предшествует репликация бактериальной хромосомы по полуконсервативному типу. При этом двуспиральная цепь ДНК раскручивается, каждая нить достраивается комплиментарной нитью и в результате каждая дочерняя клетка получает одну материнскую нить и одну вновь образованную.

Быстрота размножения разных видов бактерий различна. Большинство бактерий делятся каждые 15-30 минут. Микобактерии туберкулеза делятся медленно - одно деление за 18 часов, спирохеты - одно деление за 10 часов.

Если посеять бактерии в жидкую питательную среду определенного объема и затем каждый час брать пробу и определять количество живых бактерий в такой замкнутой среде и составить график, на котором по оси абсцисс откладывать время в часах, а по оси ординат логарифм количества живых бактерий, то получим кривую роста бактерий. Рост бактерий подразделяют на несколько фаз (рис. 5):

    латентная фаза (лаг-фаза) - бактерии адаптируются к питательной среде, количество их не увеличивается;

    фаза логарифмического роста - количество бактерий увеличивается в геометрической прогрессии;

    фаза стационарного роста, во время которой число вновь образованных бактерий уравнивается числом погибших, и количество живых бактерий остается постоянным, достигая максимального уровня. Это М-концентрация - величина, характерная для каждого вида бактерий;

    фаза отмирания, когда число отмирающих клеток начинает преобладать над числом жизнеспособных бактерий вследствие накопления продуктов метаболизма и истощения среды.

Культура бактерий в такой замкнутой несменяющейся среде называется периодической. Если же в засеянный объем непрерывно подают свежую питательную среду и удаляют такое же количество жидкости, то такую культуру называют непрерывной. Количество живых бактерий в такой культуре будет постоянно в М-концентрации. Непрерывное культивирование применяют в микробиологической промышленности.

Как у всего живого, метаболизм микроорганизмов состоит из двух взаимосвязанных, одновременно протекающих, но противоположных процессов - анаболизма, или конструктивного метаболизма, и катабо­лизма, или энергетического метаболизма.

Обмен веществ у микроорганизмов имеет свои особенности.

1) Быстрота и интенсивность обменных процессов. За сутки мик­робная клетка может переработать такое количество питательных ве­ществ, которое превышает ее собственный вес в 30-40 раз.

2) Выраженная приспособляемость к изменяющимся условиям внешней среды.

3) Питание осуществляется через всю поверхность клетки. Прокариоты не проглатывают питательные вещества, не переваривают их внутри клетки, а расщепляют их вне клетки с помощью экзоферментов до более простых соединений, которые транспортируются в клетку.

Для роста и жизнедеятельности микроорганизмов обязательно на­личие в среде обитания питательных материалов для построения ком­понентов клетки и источники энергии. Для микробов необходимы вода, источники углерода, кислорода, азота, водорода, фосфора, калия, на­трия и других элементов. Требуются также микроэлементы: железо, марганец, цинк, медь для синтеза ферментов. Различные виды микро­бов нуждаются в тех или иных факторах роста, таких, как витамины, аминокислоты, пуриновые и пиримидиновые основания.

В зависимости от способности усваивать органические или не­органические источники углерода и азота микроорганизмы делятся на две группы - аутотрофов и гетеротрофов.

Аутотрофы (греч. autos - сам, trophic - питающийся) получают уг­лерод из углекислоты (СО 2) или ее солей. Из простых неорганических соединений они синтезируют белки, жиры, углеводы, ферменты.

В зависимости от источников энергии и природы доноров микроорганизмы подразделяют на фототрофы (фотосинтезирующие), способные использовать солнечную энергию, и хемотрофы (хемосинтезирующие), получающие энергию за счет окислительно – восстановительных реакций. К фототрофам относятся исключительно сапрофитные микроорганизмы. В патологии человека ведущую роль играют хемосинтезирующие микроорганизмы.

В зависимости от природы доноров электронов хемотрофы подразделяются на хемолитотрофы (хемоавтотрофы) и хемоорганотрофы (хемогетеротрофы).

В зависимости от источников азота – прототрофы – микроорганизмы, способные синтезировать все необходимые им органические соединения (углеводы, АК и др.) из глюкозы и солей аммония. Ауксотрофы – микроорганизмы, не способные синтезировать какое – либо из указанных соединений. Они ассимилируют эти соединения и другие факторы роста в готовом виде из окружающей среды или организма хозяина.

Транспорт питательных веществ

Через клеточную стенку и цитоплазматическую мембрану внутрь клетки прокариотов проникают только небольшие молекулы, поэтому белки, полисахариды и другие биополимеры вначале расщепляются экзоферементами до более простых соединений, которые транспорти­руются внутрь клетки.

Проникновение питательных веществ в клетку происходит с по­мощью различных механизмов.

Пассивная диффузия - вещества поступают в клетку за счет диф­фузии по градиенту концентрации, то есть вследствие того, что кон­центрация вне клетки выше, чем внутри.

Облегченная диффузия - также совершается по градиенту кон­центрации, но с участием ферментов-переносчиков, так называемых пермеаз. Этот фермент присоединяет к себе молекулы вещества на внеш­ней стороне цитоплазматической мембраны и отдает его на внутрен­ней стороне в неизмененном виде. Затем свободный переносчик пере­мещается снова к наружной стороне мембраны, где связывает новые молекулы вещества. При этом каждая пермеаза переносит какое-то определенное вещество.

Эти два механизма переноса не требуют энергетических затрат.

Активный перенос происходит также с участием пермеаз, причем осуществляется против градиента концентрации. Микробная клетка может накопить вещество в концентрации, в тысячи раз превышаю­щих ее во внешней среде. Такой процесс требует затрат энергии, то есть расходуется АТФ.

Транслокация радикалов - это четвертый механизм передачи ве­ществ. Это активный перенос химически измененных молекул, с учас­тием пермеаз. Например, такое простое вещество, как глюкоза, пере­носится в фосфорилированном виде.

Выход веществ из бактериальной клетки происходит путем пас­сивной диффузии или путем облегченной диффузии с участием пермеаз.

Факторы роста микроорганизмов:

К факторам роста относят аминокислоты, пуриновые и пиримидиновые основания, липиды, витамины, железопорфирины (гем) и другие соединениями. Некоторые микроорганизмы самостоятельно синтезируют необходимые им ростовые факторы, другие получают их в готовом виде из окружающей среды. Потреб­ность того или другого микроорганизма в определенных ростовых факторах является стабильным признаком, который использует­ся для дифференциации и идентификации бактерий, а также при изготовлении питательных сред для лабораторных и биотехно­логических целей.

Аминокислоты. Многие микроорганизмы, особенно бактерии, нуждаются в тех или других аминокислотах (одной или несколь­ких), поскольку они не могут их самостоятельно синтезировать, например клостридии - в лейцине, тирозине, стрептококки - в лейцине, аргинине и др. Такого рода микроорганизмы называют­ся ауксотрофными по тем аминокислотам или другим соедине­ниям, которые они не способны синтезировать.

Пуриновые и пиримидиновые основания и их производные (аденин, гуанин, цитозин, урацил, тимин и др.) являются факто­рами роста для разных видов стрептококков, некоторые азотис­тые основания нужны для роста стафилококков и других бакте­рий. В нуклеотидах нуждаются некоторые виды микоплазм.

Липиды, в частности компоненты фосфолипидов - жирные кислоты, нужны для роста некоторых стрептококков, микоплазм. Все виды микоплазм ауксотрофны по холестерину и другим сте-ринам, что отличает их от других прокариот. Эти соединения входят в состав их цитоплазматической мембраны.

Витамины, главным образом группы В, входят в состав ко-ферментов или их простетических групп. Многие бактерии аук­сотрофны по определенным витаминам. Например, коринебактерии дифтерии, шигеллы нуждаются в никотиновой кислоте или ее амиде, который входит в состав НАД и НАДФ, золотистый стафилококк, пневмококк, бруцеллы - тиамине (ВО, входящем в состав пирофосфата, некоторые виды стрептококков, бациллы столбняка - в пантотеновой кислоте, являющейся составной частью кофермента КоА и т. д. Кроме того, факторами роста для многих бактерий являются фолиевая кислота, биотин, а также темы - компоненты цитохромов. Последние необходимы гемофильным бактериям, микобактериям туберкулеза и др.



Поделиться: