Дисперсная среда определение. Классификация дисперсных систем

Дисперсные системы.

Дисперсные системы широко распространены в природе и с давних времен используются человеком в его жизнедеятельности. Практически любой живой организм либо представляет собой дисперсную систему, либо содержит их в различных формах.

Пример: свободнодисперсные системы (нет сплошных жестких структур - золи): кровь, лимфа, желудочный и кишечный соки, спинномозговая жидкость и т.д.

связнодисперсные системы (есть жесткие пространственные структуры - гели): протоплазма, мембраны клеток, мышечное волокно, хрусталик глаза и т.д.

Дисперсные системы активно применяют в медицине, это в первую очередь коллоидные растворы, аэрозоли, кремы, мази. Биохимические процессы в организме протекают в дисперсных системах. Усвоение пищи связано с переходом питательных веществ в растворенное состояние. Биожидкости (дисперсные системы) участвуют в транспорте питательных веществ (жиров, аминокислот, кислорода), лекарственных препаратов к органам и тканям, а также в выведении из организма метаболитов (мочевины, билирубина, углекислого газа).

Знание закономерностей физико-химических процессов в дисперсных системах важно будущим врачам как для изучения медико-биологических и клинических дисциплин, так и для более глубокого понимания процессов, протекающих в организме, и сознательного изменения их в желаемом направлении.

Дисперсные системы – это многокомпонентные системы, в которых одни вещества в виде мелких частиц распределены в другом веществе. Вещество, которое распределяется, называется дисперсной фазой. Вещество, в котором распределяется дисперсная фаза, называется дисперсионной средой.

Пример: водный раствор глюкозы

молекулы глюкозы – дисперсная фаза

вода – дисперсионная среда

Дисперсность – величина, характеризующая размер взвешенных частиц в дисперсных системах. Она обратна диаметру частиц дисперсной фазы. Чем меньше размер частиц, тем больше дисперсность.

Классификация дисперсных систем.



Дисперсные системы классифицируют по пяти признакам.

1. По степени дисперсности:

· грубодисперсные

Д = 10 4 – 10 6 м –1 , характеризуются неустойчивостью, непрозрачностью.

Пример: суспензии, эмульсии, пены, взвеси.

· коллоидно-дисперсные

Д = 10 7 – 10 9 м –1 , могут быть прозрачными и мутными, обладать устойчивостью и быть неустойчивыми.

Пример: коллоидные растворы, растворы высокомолекулярных соединений.

· молекулярно-дисперсные и ионно-дисперсные

Д = 10 10 – 10 11 м –1 , характеризуются прозрачностью и устойчивостью.

Пример: растворы низкомолекулярных соединений.

2. По наличию физической поверхности раздела между дисперсной фазой и дисперсионной средой:

· гомогенные (однофазные системы, граница раздела отсутствует.

Пример: растворы низкомолекулярных и высокомолекулярных соединений.

· гетерогенные

существует граница раздела между дисперсной фазой и дисперсионной средой.

Пример: коллоидные растворы и грубодисперсные системы.

3. По характеру взаимодействия между дисперсной фазой и дисперсионной средой:

· лиофильные

между дисперсной фазой и дисперсионной средой существует сродство.

Пример: все гомогенные системы.

· лиофобные

между дисперсной фазой и дисперсионной средой слабое взаимодействие или отсутствует.

Пример: все гетерогенные системы.

4. По агрегатному состоянию дисперсной фазы и дисперсионной среды:

дисп.фаза дисп.среда газообразная твердая жидкая
газообразная смесь газов (воздух) табачный дым пыль мучная, космическая аэрозоли туман пар облака
жидкая растворенный в крови CO 2 , O 2 , N 2 , пены минеральные воды фруктовые газированные напитки коллоидные растворы суспензии растворы ВМС растворы НМС эмульсии: молоко масло сливочное маргарин кремы мази нефть
твердая твердые пены (пенопласт, активированный уголь) ионообменные смолы молекулярные сита сплавы металла цветные стекла, хрусталь драгоценные камни (рубин, аметист) суппозитории (лечебные свечи) кристаллогидраты минералы с жидкими включениями (жемчуг, опал) влажные почвы

5. По природе дисперсионной среды:

Истинные растворы.

Истинный раствор – это гомогенная лиофильная дисперсная система с размерами частиц 10 –10 – 10 –11 м.

Истинные растворы – это однофазные дисперсные системы, они характеризуются большой прочностью связи между дисперсной фазой и дисперсионной средой. Истинный раствор сохраняет гомогенность неопределенно долгое время. Истинные растворы всегда прозрачны. Частицы истинного раствора не видны даже в электронный микроскоп. Истинные растворы хорошо диффундируют.

Компонент, агрегатное состояние которого не изменяется при образовании раствора, называют растворителем (дисперсионная среда), а другой компонент – растворенным веществом (дисперсная фаза).

При одинаковом агрегатном состоянии компонентов растворителем считается компонент, количество которого в растворе преобладает.

В растворах электролитов вне зависимости от соотношения компонентов электролиты рассматриваются как растворенные вещества.

Истинные растворы подразделяются:

· по типу растворителя: водные и неводные

· по типу растворенного вещества: растворы солей, кислот, щелочей, газов и т.д.

· по отношению к электрическому току: электролиты и неэлектролиты

· по концентрации: концентрированные и разбавленные

· по степени достижения предела растворимости: насыщенные и ненасыщенные

· с термодинамической точки зрения: идеальные и реальные

· по агрегатному состоянию: газообразные, жидкие, твердые

Истинные растворы бывают:

· ионно-дисперсные (дисперсная фаза – гидратированные ионы): водный раствор NaCl

· молекулярно-дисперсные (дисперсная фаза – молекулы): водный раствор глюкозы

Ионы каждый в отдельности или совместно выполняют определённые функции в организме. Решающая роль в переносе воды в организме принадлежит ионам Na + и Cl – , т.е участвуют в водно-солевом обмене. Ионы электролитов участвуют в процессах поддержания постоянства осмотического давления, установления кислотно-щелочного равновесия, в процессах передачи нервных импульсов, в процессах активации ферментов.

С позиции живых систем наибольший интерес представляют растворы, в которых растворителем является вода.

В ней растворяется огромное число веществ. Она не только растворитель, который обеспечивает молекулярное рассеяние веществ по всему организму. Она также является участником многих химических и биохимических процессов в организме. Например, гидролиза, гидратации, набухания, транспорта питательных и лекарственных веществ, газов, антител и т.п.

В организме происходит непрерывный обмен воды и растворённых в ней веществ. Вода составляет основную массу любого живого существа. Её содержание в теле человека меняется с возрастом: у эмбриона человека – 97%, у новорождённого – 77%, у взрослых мужчин – 61%, у взрослых женщин – 54%, у стариков старше 81 года – 49,8%. Большая часть воды в организме находится внутри клеток (70%), около 23% – межклеточной воды, а остальная (7%) – находится внутри кровеносных сосудов и в составе плазмы крови.

Всего в организме 42 л воды. В сутки поступает в организм и выводится из него 1,5 – 3 л воды. Это нормальный водный баланс организма.

Главный путь выведения воды из организма – почки. Потеря 10 – 15% воды опасна, а 20 – 25% смертельна для организма.

Важнейшей характеристикой раствора является его концентрация.

Способы выражения концентрации растворов:

1. Массовая доля w(х) – величина, равная отношению массы растворённого вещества m(x) к массе раствора m(p-p)

w (x) = × 100%

2. Молярная концентрация раствора с (х) – величина, равная отношению количества вещества n(х), содержащегося в растворе, к объёму этого раствора V(р-р).

с (х) = [моль/л], где n(х) = [моль]

Миллимолярный раствор – раствор с молярной концентрацией равной 0,001 моль/л

Сантимолярный раствор – раствор с молярной концентрацией равной 0,01 моль/л

Децимолярный раствор – раствор с молярной концентрацией равной 0,1 моль/л

3. Молярная концентрация эквивалента с ( x) – величина, равная отношению количества вещества эквивалента n ( x) в растворе к объёму этого раствора.

c ( x) = [моль/л], где n ( x) = [моль], а М( x) = × М(x)

Эквивалент – это реальная или условная частица вещества х , которая в данной кислотно-основной реакции эквивалентна одному иону водорода или в данной ОВР – одному электрону.

Число эквивалентности z и фактор эквивалентности f = . Фактор эквивалентности показывает, какая доля реальной частицы вещества х эквивалентна одному иону водорода или одному электрону. Число эквивалентности z равно для:

а) кислот – основности кислоты H 2 SO 4 z = 2.

б) оснований – кислотности основания Aℓ(OH) 3 z = 3.

в) солей – произведению степени окисления (с.о.) металла на число его атомов в молекуле Fe 2 (SO 4) 3 z = 2 × 3 = 6.

г) окислителей – числу присоединенных электронов

Mn +7 + 5ē → Mn +2 z = 5

д) восстановителей – числу отданных электронов

Fe +2 – 1ē → Fe +3 z = 1

4. Моляльная концентрация b(x) – величина, равная отношению количества вещества к массе растворителя (кг)

b(x) = = [моль/кг]

5. Молярная доля c(x i) равна отношению количества вещества данного компонента к суммарному количеству всех компонентов раствора

Формулы взаимосвязи концентраций:

с ( x) = c (x) × z

У растворов имеется ряд свойств, которые не зависят от природы растворенного вещества, а зависят только от его концентрации. Наиболее важным является осмос.

Благодаря осмосу через мембраны клеток органов и тканей осуществляется сложный процесс обмена веществ организма с внешней средой.

Диффузия – процесс самопроизвольного выравнивания концентрации в единице объема.

Осмос – односторонняя диффузия молекул растворителя через полупроницаемую мембрану из растворителя в раствор или из раствора с меньшей концентрацией в раствор с большей концентрацией.

раствор растворитель

Перенос растворителя через мембрану обусловлен осмотическим давлением. Оно равно избыточному внешнему давлению, которое следует приложить со стороны раствора, чтобы прекратить процесс, то есть создать условия осмотического равновесия. Превышение избыточного давления над осмотическим может привести к обращению осмоса - обратной диффузии растворителя. Обратный осмос имеет место при фильтрации плазмы крови в артериальной части капилляра и в почечных клубочках.

Осмотическое давление – давление, которое нужно приложить к раствору, чтобы осмос прекратился.

Уравнение Вант-Гоффа: Р осм = c RT×10 3

Осмотическое давление крови: 780 – 820 кПа

Все растворы, с точки зрения осмотических явлений, можно разделить на 3 группы:

· Изотонические растворы – растворы, имеющие одинаковые осмотические давления и осмолярные концентрации. Примеры: желчь, раствор NaCl (w=0,9%, с=0,15 моль/л), раствор глюкозы (w=7%, с=0,3 моль/л)

Осмолярная концентрация (осмолярность) – суммарное количество вещества всех кинетически активных частиц, содержащихся в 1 литре раствора. с осм, осмоль/л

Осмоляльная концентрация (осмоляльность) – суммарное количество вещества всех кинетически активных частиц, содержащихся в 1 кг растворителя. b осм, осмоль/кг

Для разбавленных растворов осмолярная концентрация совпадает с осмоляльной концентрацией. с осм ≈ b осм

· Гипертонический раствор – раствор с более высокой концентрацией растворенных веществ, следовательно, с более высоким осмотическим давлением по сравнению с другим раствором и способный при наличии проницаемых мембран вытягивать из него воду. Примеры: кишечный сок, моча.

· Гипотонический раствор – раствор с более низкой концентрацией растворенных веществ, следовательно, с более низким осмотическим давлением по сравнению с другим раствором и способный при наличии проницаемых мембран терять воду. Примеры: слюна, пот.

Животные и растительные клетки отделены от окружающей среды мембраной. При помещении клетки в различные по осмолярным концентрациям или давлениям растворы будут наблюдаться следующие явления:

· плазмолиз – уменьшение клетки в объеме. При этом клетку помещают в гипертонический раствор. Разность осмотических давлений вызывает перемещение растворителя из клетки в гипертонический раствор.

· лизис – увеличение клетки в объеме. При этом клетку помещают в гипотонический раствор. Разность осмотических давлений вызывает перемещение растворителя в клетку. В случае разрыва эритроцитарных мембран и перехода гемоглобина в плазму явление называется гемолизом.

· изоосмия – объем клетки не изменяется. При этом клетку помещают в изотонический раствор.

С помощью осмотических явлений поддерживается водно-солевой обмен в организме человека. Осмос – это основа механизма работы почек. Изотонический (физиологический) раствор NaCl (0,9%) используется при больших кровопотерях. Гипертонический раствор NaCl (10%) используют при накладывании марлевых повязок на гнойные раны.

Онкотическое давление – это часть осмотического давления, создаваемого белками.

В плазме крови человека составляет лишь около 0,5 % осмотического давления (0,03-0,04 атм или 2,5 – 4,0 кПа). Тем не менее, онкотическое давление играет важнейшую роль в образовании межклеточной жидкости, первичной мочи и др. Стенка капилляров свободно проницаема для воды и низкомолекулярных веществ, но не для белков. Скорость фильтрации жидкости через стенку капилляра определяется разницей между онкотическим давлением белков плазмы и гидростатическим давлением крови, создаваемым работой сердца. На артериальном конце капилляра солевой раствор вместе с питательными веществами переходит в межклеточное пространство. На венозном конце капилляра процесс идёт в противоположном направлении, поскольку венозное давление ниже онкотического давления. В результате в кровь переходят вещества, отдаваемые клетками. При заболеваниях, сопровождающихся уменьшением концентрации в крови белков (особенно альбуминов), онкотическое давление снижается, и это может явиться одной из причин накопления жидкости в межклеточном пространстве, в результате чего развиваются отёки.


Дисперсные системы

Чистые вещества в природе встречаются очень редко. Смеси разных веществ в различных агрегатных состояниях могут образовывать гетерогенные и гомогенные системы - дисперсные системы и растворы.
Дисперсными называют гетерогенные системы, в которых одно вещество в виде очень мелких частиц равномерно распределено в объеме другого.
То вещество, которое присутствует в меньшем количестве и распределено в объеме другого, называют дисперсной фазой . Она может состоять из нескольких веществ.
Вещество, присутствующее в большем количестве, в объеме которого распределена дисперсная фаза, называют дисперсионной средой . Между ней и частицами дисперсной фазы существует поверхность раздела, поэтому дисперсные системы называют гетерогенными (неоднородными).
И дисперсионную среду, и дисперсную фазу могут представлять вещества, находящиеся в различных агрегатных состояниях - твердом, жидком и газообразном.
В зависимости от сочетания агрегатного состояния дисперсионной среды и дисперсной фазы можно выделить 9 видов таких систем.

По величине частиц веществ, составляющих дисперсную фазу, дисперсные системы делят на грубодисперсные (взвеси) с размерами частиц более 100 нм и тонкодисперсные (коллоидные растворы или коллоидные системы) с размерами частиц от 100 до 1 нм. Если же вещество раздроблено до молекул или ионов размером менее 1 нм, образуется гомогенная система - раствор. Она однородна (гомогенна), поверхности раздела между частицами и средой нет.

Уже беглое знакомство с дисперсными системами и растворами показывает, насколько они важны в повседневной жизни и в природе.

Судите сами: без нильского ила не состоялась бы великая цивилизация Древнего Египта; без воды, воздуха, горных пород и минералов вообще бы не существовала живая планета - наш общий дом - Земля; без клеток не было бы живых организмов и т. д.

Классификация дисперсных систем и растворов


Взвеси

Взвеси - это дисперсные системы, в которых размер частиц фазы более 100 нм. Это непрозрачные системы, отдельные частицы которых можно заметить невооруженным глазом. Дисперсная фаза и дисперсионная среда легко разделяются отстаиванием. Такие системы разделяют на:
1) эмульсии (и среда, и фаза - нерастворимые друг в друге жидкости). Это хорошо известные вам молоко, лимфа, водоэмульсионные краски и т. д.;
2) суспензии (среда - жидкость, а фаза - нерастворимое в ней твердое вещество). Это строительные растворы (например, «известковое молоко» для побелки), взвешенный в воде речной и морской ил, живая взвесь микроскопических живых организмов в морской воде - планктон, которым питаются гиганты-киты, и т. д.;
3) аэрозоли - взвеси в газе (например, в воздухе) мелких частиц жидкостей или твердых веществ. Различают пыли, дымы, туманы. Первые два вида аэрозолей представляют собой взвеси твердых частиц в газе (более крупные частицы в пылях), последний - взвесь мелких капелек жидкости в газе. Например, природные аэрозоли: туман, грозовые тучи - взвесь в воздухе капелек воды, дым - мелких твердых частиц. А смог, висящий над крупнейшими городами мира, также аэрозоль с твердой и жидкой дисперсной фазой. Жители населенных пунктов вблизи цементных заводов страдают от всегда висящей в воздухе тончайшей цементной пыли, образующейся при размоле цементного сырья и продукта его обжига - клинкера. Аналогичные вредные аэрозоли - пыли - имеются и в городах с металлургическими производствами. Дым заводских труб, смоги, мельчайшие капельки слюны, вылетающие изо рта больного гриппом, также вредные аэрозоли.
Аэрозоли играют важную роль в природе, быту и производственной деятельности человека. Скопления облаков, обработка полей химикатами, нанесение лакокрасочных покрытий при помощи пульверизатора, распыление топлив, выработка сухих молочных продуктов, лечение дыхательных путей (ингаляция) - примеры тех явлений и процессов, где аэрозоли приносят пользу. Аэрозоли - туманы над морским прибоем, вблизи водопадов и фонтанов, возникающая в них радуга доставляет человеку радость, эстетическое удовольствие.
Для химии наибольшее значение имеют дисперсные системы, в которых средой является вода и жидкие растворы.
Природная вода всегда содержит растворенные вещества. Природные водные растворы участвуют в процессах почвообразования и снабжают растения питательными веществами. Сложные процессы жизнедеятельности, происходящие в организмах человека и животных, также протекают в растворах. Многие технологические процессы в химической и других отраслях промышленности, например получение кислот, металлов, бумаги, соды, удобрений, протекают в растворах.

Коллоидные системы

Коллоидные системы - это такие дисперсные системы, в которых размер частиц фазы от 100 до 1 нм. Эти частицы не видны невооруженным глазом, и дисперсная фаза и дисперсионная среда в таких системах отстаиванием разделяются с трудом.
Их подразделяют на золи (коллоидные растворы) и гели (студни).
1. Коллоидные растворы, или золи. Это большинство жидкостей живой клетки (цитоплазма, ядерный сок - кариоплазма, содержимое органоидов и вакуолей) и живого организма в целом (кровь, лимфа, тканевая жидкость, пищеварительные соки, гуморальные жидкости и т. д.). Такие системы образуют клеи, крахмал, белки, некоторые полимеры.
Коллоидные растворы могут быть получены в результате химических реакций; например, при взаимодействии растворов силикатов калия или натрия («растворимого стекла») с растворами кислот образуется коллоидный раствор кремниевой кислоты. Золь образуется и при гидролизе хлорида железа (Ш) в горячей воде. Коллоидные растворы внешне похожи на истинные растворы. Их отличают от последних по образующейся «светящейся дорожке» - конусу при пропускании через них луча света.

Это явление называют эффектом Тиндаля . Более крупные, чем в истинном растворе, частицы дисперсной фазы золя отражают свет от своей поверхности, и наблюдатель видит в сосуде с коллоидным раствором светящийся конус. В истинном растворе он не образуется. Аналогичный эффект, но только для аэрозольного, а не жидкого коллоида, вы можете наблюдать в кинотеатрах при прохождении луча света от киноаппарата через воздух кинозала.

Частицы дисперсной фазы коллоидных растворов нередко не оседают даже при длительном хранении из-за непрерывных соударений с молекулами растворителя за счет теплового движения. Они не слипаются и при сближении друг с другом из-за наличия на их поверхности одноименных электрических зарядов. Но при определенных условиях может происходить процесс коагуляции.

Коагуляция - явление слипания коллоидных частиц и выпадения их в осадок - наблюдается при нейтрализации зарядов этих частиц, когда в коллоидный раствор добавляют электролит. При этом раствор превращается в суспензию или гель. Некоторые органические коллоиды коагулируют при нагревании (клей, яичный белок) или при изменении кислотно-щелочной среды раствора.

2. Гели , или студни, представляющие собой студенистые осадки, образующиеся при коагуляции золей. К ним относят большое количество полимерных гелей, столь хорошо известные вам кондитерские, косметические и медицинские гели (желатин, холодец, желе, мармелад, торт «Птичье молоко») и конечно же бесконечное множество природных гелей: минералы (опал), тела медуз, хрящи, сухожилия, волосы, мышечная и нервная ткани и т. д. Историю развития жизни на Земле можно одновременно считать историей эволюции коллоидного состояния вещества. Со временем структура гелей нарушается - из них выделяется вода. Это явление называют синерезисом .

Растворы

Раствором называют гомогенную систему, состоящую из двух и более веществ.
Растворы всегда однофазны, то есть представляют собой однородный газ, жидкость или твердое вещество. Это связано с тем, что одно из веществ распределено в массе другого в виде молекул, атомов или ионов (размер частиц менее 1 нм).
Растворы называют истинными , если требуется подчеркнуть их отличие от коллоидных растворов.
Растворителем считают то вещество, агрегатное состояние которого не изменяется при образовании раствора. Например, вода в водных растворах поваренной соли, сахара, углекислого газа. Если же раствор образовался при смешении газа с газом, жидкости с жидкостью и твердого вещества с твердым, растворителем считают тот компонент, которого больше в растворе. Так, воздух - это раствор кислорода, благородных газов, углекислого газа в азоте (растворитель). Столовый уксус, в котором содержится от 5 до 9% уксусной кислоты, представляет собой раствор этой кислоты в воде (растворитель - вода). Но в уксусной эссенции роль растворителя играет уксусная кислота, так как ее массовая доля составляет 70- 80%, следовательно, это раствор воды в уксусной кислоте.

При кристаллизации жидкого сплава серебра и золота можно получить твердые растворы разного состава.
Растворы подразделяют на:
молекулярные - это водные растворы неэлектролитов - органических веществ (спирта, глюкозы, сахарозы и т. д.);
молекулярно-ионные - это растворы слабых электролитов (азотистой, сероводородной кислот и др.);
ионные - это растворы сильных электролитов (щелочей, солей, кислот - NaOH, K 2 S0 4 , HN0 3 , НС1О 4).
Раньше существовали две точки зрения на природу растворения и растворов: физическая и химическая. Согласно первой растворы рассматривали как механические смеси, согласно второй - как нестойкие химические соединения частиц растворенного вещества с водой или другим растворителем. Последняя теория была высказана в 1887 г. Д. И. Менделеевым, который посвятил исследованию растворов более 40 лет. Современная химия рассматривает растворение как физико-химический процесс, а растворы как физико-химические системы.
Более точное определение раствора таково:
Раствор - гомогенная (однородная) система, состоящая из частиц растворенного вещества, растворителя и продуктов их взаимодействия.

Поведение и свойства растворов электролитов, как вы хорошо знаете, объясняет другая важнейшая теория химии - теория электролитической диссоциации, разработанная С. Аррениусом, развитая и дополненная учениками Д. И. Менделеева, и в первую очередь И. А. Каблуковым.

Вопросы для закрепления:
1. Что такое дисперсные системы?
2. При повреждении кожи (ранке) наблюдается свертывание крови - коагуляция золя. В чем сущность этого процесса? Почему это явление выполняет защитную функцию для организма? Как называют болезнь, при которой свертывание крови затруднено или не наблюдается?
3. Расскажите о значении различных дисперсных систем в быту.
4. Проследите эволюцию коллоидных систем в процессе развития жизни на Земле.

Диспе́рсная систе́ма - образования из двух или большего числа фаз (тел) , которые практически не смешиваются и не реагируют друг с другом химически. В типичном случае двухфазной системы первое из веществ (дисперсная фаза ) мелко распределено во втором (дисперсионная среда ). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т.д.).

Обычно дисперсные системы - это коллоидные растворы , золи . К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза.

Энциклопедичный YouTube

  • 1 / 5

    Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсионной среды и дисперсной фазы (фаз). Сочетания трёх видов агрегатного состояния позволяют выделить девять видов двухфазных дисперсных систем. Для краткости записи их принято обозначать дробью, числитель которой указывает на дисперсную фазу, а знаменатель на дисперсионную среду; например, для системы «газ в жидкости» принято обозначение Г/Ж.

    Обозначение Дисперсная фаза Дисперсионная среда Название и пример
    Г/Г Газообразная Газообразная Не образуют дисперсные системы
    Ж/Г Жидкая Газообразная Аэрозоли: туманы , облака
    Т/Г Твёрдая Газообразная Аэрозоли (пыли, дымы), порошкообразные вещества
    Г/Ж Газообразная Жидкая Газовые эмульсии и пены
    Ж/Ж Жидкая Жидкая Эмульсии: нефть , крем , молоко
    Т/Ж Твёрдая Жидкая Суспензии и золи: пульпа, ил , взвесь , паста
    Г/Т Газообразная Твёрдая Пористые тела: пенополимеры , пемза
    Ж/Т Жидкая Твёрдая Капиллярные системы (заполненные жидкостью пористые тела): грунт , почва
    Т/Т Твёрдая Твёрдая Твёрдые гетерогенные системы: сплавы , бетон , ситаллы , композиционные материалы

    По кинетическим свойствам дисперсной фазы двухфазные дисперсные системы можно разделить на два класса:

    • Свободнодисперсные системы , у которых дисперсная фаза подвижна;
    • Связнодисперсные системы , у которых дисперсионная среда твёрдая, а частицы их дисперсной фазы связаны между собой и не могут свободно перемещаться.

    В свою очередь, эти системы классифицируются по степени дисперсности .

    Системы с одинаковыми по размерам частицами дисперсной фазы называются монодисперсными, а с неодинаковыми по размеру частицами - полидисперсными. Как правило, окружающие нас реальные системы полидисперсны.

    Встречаются и дисперсные системы с бо́льшим числом фаз - сложные дисперсные системы. Например, при вскипании жидкой дисперсионной среды с твёрдой дисперсной фазой получается трёхфазная система «пар - капли - твёрдые частицы» .

    Другим примером сложной дисперсной системы может служить молоко , основными составными частями которого (не считая воды) являются жир , казеин и молочный сахар . Жир находится в виде эмульсии и при стоянии молока постепенно поднимается кверху (сливки). Казеин содержится в виде коллоидного раствора и самопроизвольно не выделяется, но легко может быть осаждён (в виде творога) при подкислении молока, например, уксусом. В естественных условиях выделение казеина происходит при скисании молока . Наконец, молочный сахар находится в виде молекулярного раствора и выделяется лишь при испарении воды.

    Свободнодисперсные системы

    Свободнодисперсные системы по размерам частиц подразделяют на:

    Ультрамикрогетерогенные системы также называют коллоидными или золями . В зависимости от природы дисперсионной среды, золи подразделяют на твёрдые золи, аэрозоли (золи с газообразной дисперсионной средой) и лиозоли (золи с жидкой дисперсионной средой). К микрогетерогенным системам относят суспензии , эмульсии , пены и порошки. Наиболее распространёнными грубодисперсными системами являются системы «твёрдое тело - газ» (например, песок).

    Коллоидные системы играют огромную роль в биологии и человеческой жизни. В биологических жидкостях организма ряд веществ находится в коллоидном состоянии. Биологические объекты (мышечные и нервные клетки, кровь и другие биологические жидкости) можно рассматривать как коллоидные растворы. Дисперсионной средой крови является плазма - водный раствор неорганических солей и белков.

    Связнодисперсные системы

    Пористые материалы

    Пористые материалы по размерам пор подразделяют, согласно классификации М. М. Дубинина , на:

    По геометрическим признакам пористые структуры подразделяются на регулярные (у которых в объёме тела наблюдается правильное чередование отдельных пор или полостей и соединяющих их каналов) и стохастические (в которых ориентация, форма, размеры, взаимное расположение и взаимосвязи пор носят случайный характер). Для большинства пористых материалов характерна стохастическая структура. Имеет значение и характер пор: открытые поры сообщаются с поверхностью тела так, что через них возможна фильтрация жидкости или газа; тупиковые поры также сообщаются с поверхностью тела, но их наличие на проницаемости материала не сказывается; закрытые поры .

    Твёрдые гетерогенные системы

    Характерным примером твёрдых гетерогенных систем являются получившие в последнее время широкое распространение композиционные материалы (композиты) - искусственно созданные сплошные, но неоднородные, материалы, которые состоят из двух или более компонентов с чёткими границами раздела между ними. В большинстве таких материалов (за исключением слоистых) компоненты можно разделить на матрицу и включённые в неё армирующие элементы ; при этом армирующие элементы обычно отвечают за механические характеристики материала, а матрица обеспечивает совместную работу армирующих элементов. К числу старейших композиционных материалов относятся

    Большинство окружающих нас веществ представляют собой смеси различных субстанций, поэтому изучение их свойств играет важную роль в развитии химии, медицины, пищевой промышленности и других отраслей народного хозяйства. В статье рассматриваются вопросы, что такое степень дисперсности, и как она влияет на характеристики системы.

    Что такое дисперсные системы?

    Прежде чем перейти к обсуждению вопроса о степени дисперсности, необходимо пояснить, к каким системам может применяться это понятие.

    Представим себе, что у нас имеются два различных вещества, которые могут отличаться друг от друга химическим составом, например, поваренная соль и чистая вода, или же агрегатным состоянием, например, та же вода в жидком и твердом (лед) состояниях. Теперь необходимо взять и смешать эти две субстанции и интенсивно их перемешать. Какой будет результат? Он зависит от того, прошла при смешивании химическая реакция или нет. Когда речь ведут о дисперсных системах, то полагают, что при их образовании никакой реакции не происходит, то есть исходные вещества сохраняют свое строение на микроуровне и присущие им физические свойства, например, плотность, цвет, электропроводность и другие.

    Таким образом, дисперсная система - это механическая смесь, в результате которой два и более вещества смешиваются друг с другом. При ее образовании пользуются понятиями "дисперсионная среда" и "фаза". Первая обладает свойством непрерывности внутри системы и, как правило, находится в ней в большом относительном количестве. Вторая (дисперсная фаза) характеризуется свойством прерывности, то есть в системе она находится в виде мелких частиц, которые ограничены поверхностью, отделяющей их от среды.

    Гомогенные и гетерогенные системы

    Понятно, что названные две составляющие дисперсной системы будут отличаться по своим физическим свойствам. Например, если бросить в воду песок и размешать его, то понятно, что существующие в воде песчинки, химическая формула которых SiO 2 , ничем не будут отличаться от того состояния, когда они не находились в воде. В таких случаях говорят о гетерогенности. Иными словами, гетерогенная система представляет собой смесь из нескольких (двух и более) фаз. Под последней понимают некоторый конечный объем системы, который характеризуется определенными свойствами. В примере выше имеем две фазы: песок и вода.

    Однако размеры частиц дисперсной фазы при их растворении в какой-либо среде могут стать настолько маленькими, что они перестанут проявлять свои индивидуальные свойства. В этом случае говорят о гомогенных или однородных субстанциях. В них хотя и находится несколько компонентов, но все они образуют одну фазу по всему объему системы. Примером гомогенной системы является раствор NaCl в воде. При его растворении из-за взаимодействия с полярными молекулами H 2 O кристалл NaCl распадается на отдельные катионы (Na +) и анионы (Cl -). Они однородно смешиваются с водой, и уже невозможно в такой системе найти границу раздела между растворимым веществом и растворителем.

    Размер частиц

    Что такое степень дисперсности? Эту величину необходимо рассмотреть подробнее. Что она собой представляет? Она обратно пропорциональна размеру частиц дисперсной фазы. Именно эта характеристика лежит в основе классификации всех рассматриваемых субстанций.

    При изучении дисперсных систем студенты часто путаются в их названиях, поскольку полагают, что в основе их классификации также лежит агрегатное состояние. Это неверно. Смеси разных агрегатных состояний действительно имеют разные названия, например, эмульсии - это водяные субстанции, а аэрозоли уже предполагают существование газовой фазы. Однако свойства дисперсных систем зависят главным образом от размера частиц растворенной в них фазы.

    Общепринятая классификация

    Классификация дисперсных систем по степени дисперсности приведена ниже:

    • Если условный размер частиц меньше 1 нм, то такие системы называют настоящими, или истинными растворами.
    • Если условный размер частицы лежит в пределах между 1 нм и 100 нм, тогда рассматриваемая субстанция будет называться коллоидным раствором.
    • Если же частицы больше 100 нм, то ведут речь о суспензиях или взвесях.

    Касательно приведенной классификации проясним два момента: во-первых, приведенный цифры являются ориентировочными, то есть система, в которой размер частиц будет 3 нм, не обязательно является коллоидом, она может представлять собой и истинный раствор. Это можно установить, изучив ее физические свойства. Во-вторых, можно заметить, что в списке используется фраза "условный размер". Связано это с тем, что форма частиц в системе может быть совершенно произвольной, и в общем случае имеет сложную геометрию. Поэтому говорят о некотором среднем (условном) их размере.

    Истинные растворы

    Как выше было сказано, степень дисперсности частиц в настоящих растворах настолько велика (их размер очень маленький, < 1 нм), что не существует поверхности раздела между ними и растворителем (средой), то есть имеет место однофазная гомогенная система. Для полноты информации напомним, что размер атома составляет порядка одного ангстрема (0,1 нм). Последняя цифра говорит о том, что частицы в настоящих растворах имеют атомные размеры.

    Главными свойствами истинных растворов, которые их отличают от коллоидов и суспензий, являются следующие:

    • Состояние раствора существует сколь угодно долго в неизменном виде, то есть не образуется осадка дисперсной фазы.
    • Растворенную субстанцию нельзя отделить от растворителя путем фильтрации через обычную бумагу.
    • Субстанция также не отделяется в результате процесса перехода через пористую мембрану, который называется в химии диализом.
    • Отделить от растворителя можно только путем изменения агрегатного состояния последнего, например, путем выпаривания.
    • Для можно провести электролиз, то есть пропустить электрический ток, если приложить к системе разность потенциалов (два электрода).
    • Они не рассеивают свет.

    Примером истинных растворов является смешивание различных солей с водой, например, NaCl (соль поваренная), NaHCO 3 (пищевая сода), KNO 3 (нитрат калия) и другие.

    Коллоидные растворы

    Это промежуточные системы между настоящими растворами и суспензиями. Тем не менее, они обладают рядом уникальных характеристик. Перечислим их:

    • Они сколь угодно долго являются механически стабильными, если не изменяются условия среды. Достаточно нагреть систему или изменить ее кислотность (показатель pH), как коллоид коагулирует (выпадет в осадок).
    • Они не разделяются с помощью фильтровальной бумаги, однако, процесс диализ приводит к разделения дисперсной фазы и среды.
    • Как и для истинных растворов, для них можно провести электролиз.
    • Для прозрачных коллоидных систем характерен так называемый эффект Тиндаля: пропуская луч света через эту систему, можно его увидеть. Связано это с рассеиванием электромагнитных волн видимой части спектра во всех направлениях.
    • Способность адсорбировать другие вещества.

    Коллоидные системы, благодаря перечисленным свойствам, широко используются человеком в различных сферах деятельности (пищевая промышленность, химия), а также часто встречаются в природе. Примером коллоида является сливочное масло, майонез. В природе это туманы, облака.

    Прежде чем переходить к описанию последнего (третьего) класса дисперсных систем, поясним подробнее некоторые из названных свойств для коллоидов.

    Какие бывают коллоидные растворы?

    Для этого типа дисперсных систем классификацию можно привести, учитывая разные агрегатные состояния среды и растворенной в ней фазы. Ниже дана соответствующая таблица/

    Из таблицы видно, что коллоидные субстанции присутствуют повсеместно, как в быту, так и в природе. Отметим, что аналогичную таблицу можно привести также для суспензий, вспоминая, что разница с коллоидами у них заключается только в размере дисперсной фазы. Однако суспензии являются механически нестабильными, поэтому представляют меньший интерес для практики, чем коллоидные системы.

    Причина механической стабильности коллоидов

    Почему майонез может долго лежать в холодильнике, и взвешенные частицы в нем не выпадают в осадок? Почему растворенные в воде частицы красок со временем не "падают" на дно сосуда? Ответом на эти вопросы будет броуновское движение.

    Этот тип движения был открыт в первой половине XIX века английским ботаником Робертом Броуном, который наблюдал под микроскопом, как движутся мелкие частицы пыльцы в воде. С физической точки зрения броуновское движение является проявлением хаотического перемещения молекул жидкости. Его интенсивность увеличивается, если повысить температуру жидкости. Именно этот тип движения заставляет находиться во взвешенном состоянии мелкие частицы коллоидных растворов.

    Свойство адсорбции

    Дисперсность - это величина, обратная среднему размеру частиц. Поскольку этот размер в коллоидах лежит в пределах от 1 нм до 100 нм, то они обладают очень развитой поверхностью, то есть отношение S/m является большой величиной, здесь S - суммарная площадь раздела между двумя фазами (дисперсионной средой и частицами), m - общая масса частиц в растворе.

    Атомы, которые находятся на поверхности частиц дисперсной фазы, обладают ненасыщенными химическими связями. Это означает, что они могут образовывать соединения с другими молекулами. Как правило, эти соединения возникают за счет ван-дер-ваальсовых сил либо водородных связей. Они способны удержать несколько слоев молекул на поверхности коллоидных частиц.

    Классическим примером адсорбента является активированный уголь. Он представляет собой коллоид, где дисперсионной средой является твердое тело, а фазой - газ. Удельная площадь поверхности для него может достигать 2500 м 2 /г.

    Степень дисперсности и удельная поверхность

    Расчет величины S/m является непростой задачей. Дело в том, что частицы в коллоидном растворе имеют различные размеры, форму, а также поверхность каждой частицы обладает уникальным рельефом. Поэтому теоретические методы решения этой задачи приводят к качественным результатам, а не к количественным. Тем не менее, полезно привести от степени дисперсности формулу удельной поверхности.

    Если положить, что все частицы системы имеют сферическую форму и одинаковые размеры, тогда в результате незамысловатых расчетов получается такое выражение: S ud = 6/(d*ρ), где S ud - площадь поверхности (удельная), d - диаметр частицы, ρ - плотность вещества, из которого она состоит. Из формулы видно, что частицы самые маленькие и самые тяжелые будут давать наибольший вклад в рассматриваемую величину.

    Экспериментальный способ определения S ud заключается в вычислении объема газа, который адсорбируется исследуемым веществом, а также в измерении размера пор (дисперсная фаза) в нем.

    Системы лиофильные и лиофобные

    Лиофильность и лиофобность - это те характеристики, которые, по сути, обуславливают существование классификации дисперсных систем в том виде, в котором она приведена выше. Оба понятия характеризуют силовую связь между молекулами растворителя и растворяемого вещества. Если эта связь велика, то говорят о лиофильности. Так, все солей в воде являются лиофильными, поскольку их частицы (ионы) электрически связаны с полярными молекулами H 2 O. Если же рассматривать такие системы, как сливочное масло или майонез, то это представители типичных гидрофобных коллоидов, покольку в них молекулы жиров (липидов) отталкиваются от полярных молекул H 2 O.

    Важно отметить, что лиофобные (гидрофобные, если растворителем является вода) системы являются термодинамически нестабильными, что их отличает от лиофильных.

    Свойства суспензий

    Теперь рассмотрим последний класс дисперсных систем - суспензии. Напомним, что они характеризуются тем, что самая маленькая частица в них больше или порядка 100 нм. Какими свойствами они обладают? Ниже дан соответствующий список:

    • Они механически нестабильны, поэтому за короткий промежуток времени в них образуется осадок.
    • Они являются мутными и непрозрачными для солнечных лучей.
    • Фазу от среды можно отделить с помощью фильтровальной бумаги.

    Примерами суспензий в природе можно назвать мутную воду в реках или вулканический пепел. Использование человеком суспензий связано, как правило, с медициной (растворы лекарственных препаратов).

    Коагуляция

    Что можно сказать смесях веществ с различной степенью дисперсности? Частично этот вопрос уже был освещен в статье, поскольку в любой дисперсной системе частицы имеют размер, лежащий в некоторых пределах. Здесь лишь рассмотрим один любопытный случай. Что будет, если смешать коллоид и истинный раствор электролита? Взвешенная система нарушится, и произойдет ее коагуляция. Причина ее заключается во влиянии электрических полей ионов истинного раствора на поверхностный заряд коллоидных частиц.

    Диспе́рсная систе́ма - образования из двух или большего числа фаз (тел) , которые практически не смешиваются и не реагируют друг с другом химически. В типичном случае двухфазной системы первое из веществ (дисперсная фаза ) мелко распределено во втором (дисперсионная среда ). Если фаз несколько, их можно отделить друг от друга физическим способом (центрифугировать, сепарировать и т.д.).

    Обычно дисперсные системы - это коллоидные растворы , золи . К дисперсным системам относят также случай твёрдой дисперсной среды, в которой находится дисперсная фаза. Растворы высокомолекулярных соединений вами

    Классификация дисперсных систем

    Наиболее общая классификация дисперсных систем основана на различии в агрегатном состоянии дисперсионной среды и дисперсной фазы (фаз). Сочетания трёх видов агрегатного состояния позволяют выделить девять видов двухфазных дисперсных систем. Для краткости записи их принято обозначать дробью, числитель которой указывает на дисперсную фазу, а знаменатель на дисперсионную среду; например, для системы «газ в жидкости» принято обозначение Г/Ж.

    Обозначение Дисперсная фаза Дисперсионная среда Название и пример
    Г/Г Газообразная Газообразная Всегда гомогенная смесь (воздух, природный газ)
    Ж/Г Жидкая Газообразная Аэрозоли: туманы , облака
    Т/Г Твёрдая Газообразная Аэрозоли (пыли, дымы), порошкообразные вещества
    Г/Ж Газообразная Жидкая Газовые эмульсии и пены
    Ж/Ж Жидкая Жидкая Эмульсии: нефть , крем , молоко
    Т/Ж Твёрдая Жидкая Суспензии и золи: пульпа, ил , взвесь , паста
    Г/Т Газообразная Твёрдая Пористые тела: пенополимеры , пемза
    Ж/Т Жидкая Твёрдая Капиллярные системы (заполненные жидкостью пористые тела): грунт , почва
    Т/Т Твёрдая Твёрдая Твёрдые гетерогенные системы: сплавы , бетон , ситаллы , композиционные материалы

    По кинетическим свойствам дисперсной фазы двухфазные дисперсные системы можно разделить на два класса:

    • Свободнодисперсные системы , у которых дисперсная фаза подвижна;
    • Связнодисперсные системы , у которых дисперсионная среда твёрдая, а частицы их дисперсной фазы связаны между собой и не могут свободно перемещаться.

    В свою очередь, эти системы классифицируются по степени дисперсности .

    Системы с одинаковыми по размерам частицами дисперсной фазы называются монодисперсными, а с неодинаковыми по размеру частицами - полидисперсными. Как правило, окружающие нас реальные системы полидисперсны.

    Встречаются и дисперсные системы с бо́льшим числом фаз - сложные дисперсные системы. Например, при вскипании жидкой дисперсионной среды с твёрдой дисперсной фазой получается трёхфазная система «пар - капли - твёрдые частицы» .

    Другим примером сложной дисперсной системы может служить молоко , основными составными частями которого (не считая воды) являются жир , казеин и молочный сахар . Жир находится в виде эмульсии и при стоянии молока постепенно поднимается кверху (сливки). Казеин содержится в виде коллоидного раствора и самопроизвольно не выделяется, но легко может быть осаждён (в виде творога) при подкислении молока, например, уксусом. В естественных условиях выделение казеина происходит при скисании молока . Наконец, молочный сахар находится в виде молекулярного раствора и выделяется лишь при испарении воды.

    Свободнодисперсные системы

    Свободнодисперсные системы по размерам частиц подразделяют на:

    Ультрамикрогетерогенные системы также называют коллоидными или золями . В зависимости от природы дисперсионной среды, золи подразделяют на твёрдые золи, аэрозоли (золи с газообразной дисперсионной средой) и лиозоли (золи с жидкой дисперсионной средой). К микрогетерогенным системам относят суспензии , эмульсии , пены и порошки. Наиболее распространёнными грубодисперсными системами являются системы «твёрдое тело - газ» (например, песок).

    Коллоидные системы играют огромную роль в биологии и человеческой жизни. В биологических жидкостях организма ряд веществ находится в коллоидном состоянии. Биологические объекты (мышечные и нервные клетки , кровь и другие биологические жидкости) можно рассматривать как коллоидные растворы. Дисперсионной средой крови является плазма - водный раствор неорганических солей и белков .

    Связнодисперсные системы

    Пористые материалы

    Пористые материалы по размерам пор подразделяют, согласно классификации М. М. Дубинина , на:

    По геометрическим признакам пористые структуры подразделяются на регулярные (у которых в объёме тела наблюдается правильное чередование отдельных пор или полостей и соединяющих их каналов) и стохастические (в которых ориентация, форма, размеры, взаимное расположение и взаимосвязи пор носят случайный характер). Для большинства пористых материалов характерна стохастическая структура. Имеет значение и характер пор: открытые поры сообщаются с поверхностью тела так, что через них возможна фильтрация жидкости или газа; тупиковые поры также сообщаются с поверхностью тела, но их наличие на проницаемости материала не сказывается; закрытые поры .

    Твёрдые гетерогенные системы

    Характерным примером твёрдых гетерогенных систем являются получившие в последнее время широкое распространение композиционные материалы (композиты) - искусственно созданные сплошные, но неоднородные, материалы, которые состоят из двух или более компонентов с чёткими границами раздела между ними. В большинстве таких материалов (за исключением слоистых) компоненты можно разделить на матрицу и включённые в неё армирующие элементы ; при этом армирующие элементы обычно отвечают за механические характеристики материала, а матрица обеспечивает совместную работу армирующих элементов. К числу старейших композиционных материалов относятся саман , железобетон , булат , папье-маше . Ныне широко распространены фиброармированные пластики , стеклопластик , металлокерамика , нашедшие применение в самых различных областях техники.

    Движение дисперсных систем

    Изучением движения дисперсных систем занимается механика многофазных сред . В частности, задачи оптимизации различных теплоэнергетических устройств (паротурбинных установок , теплообменников и др.), а также разработки технологий нанесения различных покрытий делают актуальной проблему математического моделирования пристеночных течений смеси «газ - жидкие капли». В свою очередь, значительное разнообразие структуры пристеночных течений многофазных сред, необходимость учёта различных факторов (инерционность капель, образование жидкой плёнки, фазовые переходы и др.) требуют построения специальных математических моделей многофазных сред, активно разрабатываемых в настоящее время



Поделиться: